Document Type : Research Note

Authors

1 Iran University of Science and Technology School of Advanced Technology Department of Energy Systems Engineering

2 Iran University of Science and Technology Energy Systems Engineering

3 Civil Engineering Department, Islamic Azad University of Arak

4 Department of Mechanical Engineering, Islamic Azad University, Pardis Branch, Pardis, Iran

5 Professor at São Paulo State University - UNESP - FEG - Energy Department

Abstract

Until 2026, the annual rate of municipal solid waste production will increase and the per capita waste generation in Iran will be 0.6 kg/person.day. In this paper, the process of conversion of waste-to-energy in Iran is investigated and the future situation is estimated. Also, the trend of waste management methods and energy production are evaluated. At the end, the benefits of the waste-to-energy process at the capital of Iran (Tehran) are observed. Waste-to-Energy (WTE) facilities in waste management are used within 3 regions of 22 metropolitan areas of Tehran and serve 950,000 citizens. With manufacturing new WTE plants in Iran, it would be possible to prevent the burning of about 15 million barrels of oil or 255⨯107 cubic meters of natural gas annually and use these fossil fuels to produce petrochemicals and export them. The associated overall expenses of WTE is also estimated in different countries at a rate of GDP between 300 and 3,000 $ per ton of MSW. By substituting WTE plants instead of oil basic plants, can reduce about 0.13 kg/kWh CO2 emissions. While most of the power plants are gas basic, that will have an increase of CO2 emissions of about 0.19 kg / kWh.

Keywords

Main Subjects

[1]     A. J. Chandler et al., Municipal solid waste incinerator residues, Vol. 67. Elsevier, 1997.
[2]     L. Branchini, Waste-to-energy: advanced cycles and new design concepts for efficient power plants. Springer, 2015.
[3]     A. Nabavi-pelesaraei, R. Bayat, and H. Hosseinzadeh-bandbafha, “Modeling of energy consumption and environmental life cycle assessment for incineration and land fi ll systems of municipal solid waste management-A case study in Tehran Metropolis of Iran,” J. Clean. Prod., Vol. 148, pp. 427–440, 2017.
[4]     A. Nabavi-pelesaraei, R. Bayat, and H. Hosseinzadeh-bandbafha, “Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management,” J. Clean. Prod., Vol. 154, pp. 602–613, 2017.
[5]     K. Perkins, A. Vincent, F. White, S. Vernon-Gerstenfeld, I. Bar-On, and I. E. R. González, “Evaluation and solid waste management plan for El Cuerpo de Bomberos.” Worcester, MA: Worcester Polytechnic Institute, 2008.
[6]     E. Kuznetsova, M. Cardin, M. Diao, and S. Zhang, “Integrated decision-support methodology for combined centralized- decentralized waste-to-energy management systems design,” Renew. Sustain. Energy Rev., Vol. 103, no. January, pp. 477–500, 2019.
[7]     M. Touš, M. Pavlas, O. Putna, P. Stehlík, and L. Crha, “Combined heat and power production planning in a waste-to-energy plant on a short-term basis,” Energy, vol. 90, pp. 137–147, 2015.
[8]     A. Mirdar, S. Mansour, B. Karimi, and C. Lee, “Multi-period sustainable and integrated recycling network for municipal solid waste A case study in Tehran,” J. Clean. Prod., Vol. 151, pp. 96–108, 2017.
[9]     P. H. Brunner and H. Rechberger, “Waste to energy - key element for sustainable waste management,” Waste Manag., Vol. 37, pp. 3–12, 2015.
[10]  A. Heidari, A. Hajinezhad, and A. Aslani, “A Sustainable Power Supply System , Iran ’ s Opportunities via Bioenergy,” 2018.
[11]  P. H. Brunner and H. Rechberger, “Waste to energy–key element for sustainable waste management,” Waste Manag., Vol. 37, pp. 3–12, 2015.
[12]  X. Li, “Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete,” Resour. Conserv. Recycl., Vol. 53, No. 1, pp. 36–44, 2008.
[13]  B. Wens, R. Gillner, K. Hornsby, and T. Pretz, “Environmental Impacts of NF-Metal Recycling–MSW as a Resource “,” in ISWA World Congress, 2010.
[14]  U. Arena, “Process and technological aspects of municipal solid waste gasification. A review,” Waste Manag., Vol. 32, No. 4, pp. 625–639, 2012.
[15]  U. Arena, “From waste-to-energy to waste-to-resources: the new role of thermal treatments of solid waste in the Recycling Society,” Waste Manag., Vol. 37, pp. 1–3, 2015.
[16]  M. Pourali, “Application of plasma gasification technology in waste to energy-challenges and opportunities,” IEEE Trans. Sustain. Energy, Vol. 1, No. 3, pp. 125–130, 2010.
[17]  M. Shaygan, M. A. Ehyaei, A. Ahmadi, M. E. H. Assad, and J. L. Silveira, “Energy, exergy, advanced exergy and economic analyses of hybrid polymer electrolyte membrane (PEM) fuel cell and photovoltaic cells to produce hydrogen and electricity,” J. Clean. Prod., Vol. 234, pp. 1082–1093, 2019.
[18]  S. T. Tan, C. T. Lee, H. Hashim, W. S. Ho, and J. S. Lim, “Optimal process network for municipal solid waste management in Iskandar Malaysia,” J. Clean. Prod., Vol. 71, pp. 48–58, 2014.
[19]  “IEA,” 2010.
[20]  “Swedish Waste Management,” 2018. [Online]. Available: https://www.avfallsverige.se/fileadmin/user_upload/Publikationer/Avfallshantering_2017_eng_low.pdf.
[21]  F. Habibi, E. Asadi, S. J. Sadjadi, and F. Barzinpour, “A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities : A case study in Tehran,” J. Clean. Prod., Vol. 166, pp. 816–834, 2017.
[22]  J. Jara-Samaniego et al., “Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production,” J. Clean. Prod., Vol. 141, pp. 1349–1358, 2017. 
[23]  D. A. Turner, I. D. Williams, and S. Kemp, “Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making,” J. Clean. Prod., Vol. 129, pp. 234–248, 2016.
[24]  R. Heidari, R. Yazdanparast, and A. Jabbarzadeh, “Sustainable design of a municipal solid waste management system considering waste separators : A real-world application,” Sustain. Cities Soc., Vol. 47, No. February, p. 101457, 2019.
[25]  M. A. Edalatpour, S. M. J. M. Al-e-hashem, B. Karimi, and B. Bahli, “Investigation on a novel sustainable model for waste management in megacities : A case study in tehran municipality,” Sustain. Cities Soc., Vol. 36, No. May 2017, pp. 286–301, 2018.
[26]  S. Azami, M. Taheri, O. Pourali, and F. Torabi, “Energy and exergy analyses of a mass-fired boiler for a proposed waste-to-energy power plant in Tehran,” Appl. Therm. Eng., Vol. 140, pp. 520–530, 2018.
[27]  P. Nojedehi, M. Heidari, A. Ataei, M. Nedaei, and E. Kurdestani, “Environmental assessment of energy production from landfill gas plants by using Long-range Energy Alternative Planning (LEAP) and IPCC methane estimation methods: A case study of Tehran,” Sustain. Energy Technol. Assessments, Vol. 16, pp. 33–42, 2016.
[28]  R. B. Hiremath, B. Kumar, P. Balachandra, and N. H. Ravindranath, “Decentralized sustainable energy planning of Tumkur district, India,” Environ. Prog. Sustain. Energy, Vol. 30, No. 2, pp. 248–258, 2011.
[29]  B. Amuzu‐Sefordzi, J. Huang, D. M. A. Sowa, and T. D. Baddoo, “Biomass‐derived hydrogen energy potential in A frica,” Environ. Prog. Sustain. Energy, Vol. 35, No. 1, pp. 289–297, 2016.
[30]  S. I. Ahmed et al., “Optimal landfill gas utilization for renewable energy production,” Environ. Prog. Sustain. Energy, Vol. 34, No. 1, pp. 289–296, 2015.
[31]  C. Poma, V. Verda, and S. Consonni, “Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle,” Energy, Vol. 35, No. 2, pp. 786–793, 2010. 
[32]  C. Poma, V. Verda, and S. Consonni, “Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle,” Energy, Vol. 35, No. 2, pp. 786–793, 2010.
[33]  R. Johri, K. V Rajeshwari, and A. N. Mullick, “Technological options for municipal solid waste management,” Wealth from Waste, p. 341, 2011.
[34]  S. Tan, H. Hashim, C. Lee, M. R. Taib, and J. Yan, “Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion,” Energy procedia, Vol. 61, pp. 704–708, 2014.
[35]  C. S. Kirby and J. D. Rimstidt, “Mineralogy and surface properties of municipal solid waste ash,” Environ. Sci. Technol., Vol. 27, No. 4, pp. 652–660, 1993.
[36]  O. K. M. Ouda, S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres, “Waste to energy potential: a case study of Saudi Arabia,” Renew. Sustain. Energy Rev., Vol. 61, pp. 328–340, 2016.
[37]  A. Björklund and G. Finnveden, “Recycling revisited - Life cycle comparisons of global warming impact and total energy use of waste management strategies,” Resour. Conserv. Recycl., Vol. 44, No. 4, pp. 309–317, 2005.
[38]  A. R. Ariae, M. Jahangiri, M. H. Fakhr, and A. A. Shamsabadi, “Simulation of Biogas Utilization Effect on The Economic Efficiency and Greenhouse Gas Emission: A Case Study in Isfahan, Iran.,” Int. J. Renew. Energy Dev., Vol. 8, No. 2, 2019.
[39]  C. Vadenbo, S. Hellweg, and G. Guillén-Gosálbez, “Multi-objective optimization of waste and resource management in industrial networks–Part I: Model description,” Resour. Conserv. Recycl., vol. 89, pp. 52–63, 2014.
[40]  M. Münster and H. Lund, “Comparing Waste-to-Energy technologies by applying energy system analysis,” Waste Manag., Vol. 30, No. 7, pp. 1251–1263, 2010.
[41]  M. A. Ehyaei, A. Ahmadi, M. E. H. Assad, and T. Salameh, “Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses,” J. Clean. Prod., 2019.
[42]  M. A. Ehyaei, A. Ahmadi, M. E. H. Assad, A. A. Hachicha, and Z. Said, “Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector,” Sol. Energy, Vol. 187, pp. 175–184, 2019. 
[43]  C. Montejo, D. Tonini, M. del Carmen Márquez, and T. F. Astrup, “Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization,” J. Environ. Manage., Vol. 128, pp. 661–673, 2013. 
[44]  A. Ra et al., “The impact of various festivals and events on recycling potential of municipal solid waste in Tehran , Iran,” Vol. 183, pp. 77–86, 2018. 
[45]  M. Rasapoor, M. Adl, and B. Pourazizi, “Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management : A practical case study in Tehran , Iran,” J. Environ. Manage., Vol. 184, pp. 528–534, 2016. 
[46]  N. Ferronato, V. Torretta, M. Ragazzi, and E. C. Rada, “Waste mismanagement in developing countries: A case study of environmental contamination,” UPB Sci. Bull, Vol. 79, pp. 185–196, 2017.
[47]  R. Chandrappa and D. B. Das, “Materials Recovery and Recycling,” in Solid Waste Management, Springer, 2012, pp. 81–115.
[48]  M. A. Alanbari, N. Al-Ansari, and H. K. Jasim, “GIS and Multicriteria Decision Analysis for Landfill Site Selection in AL-HashimyahQadaa,” Nat. Sci., Vol. 6, No. 5, pp. 282–304, 2014.
[49]  S. Kapilan and K. Elangovan, “Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA),” J. Cent. South Univ., Vol. 25, No. 3, pp. 570–585, 2018. 
[50]  H. K. S. Amiri and J. H. A. Karimi, “Integrating GIS and multi ‑ criteria decision analysis for landfill site selection , case study : Javanrood County in Iran,” Int. J. Environ. Sci. Technol., No. 0123456789, 2018.
[51]  S. Shu, W. Zhu, S. Wang, C. W. W. Ng, Y. Chen, and A. C. F. Chiu, “Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach,” Sci. Total Environ., Vol. 612, pp. 1123–1131, 2018.
[52]  H. Pasalari, M. Farzadkia, M. Gholami, and M. M. Emamjomeh, “Management of landfill leachate in Iran: valorization, characteristics, and environmental approaches,” Environ. Chem. Lett., pp. 1–14, 2018.
[53]  Y. Chi, J. Dong, Y. Tang, Q. Huang, and M. Ni, “Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China,” J. Mater. Cycles Waste Manag., Vol. 17, No. 4, pp. 695–706, 2015.
[54]  H. Taghipour, M. Alizadeh, R. Dehghanzadeh, M. R. Farshchian, M. Ganbari, and M. Shakerkhatibi, “Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran,” Heal. Promot. Perspect., Vol. 6, No. 4, p. 202, 2016.
[55]  Q. Xu, X. Jin, Z. Ma, H. Tao, and J. H. Ko, “Methane production in simulated hybrid bioreactor landfill,” Bioresour. Technol., Vol. 168, pp. 92–96, 2014.
[56]  R. Cossu, L. Morello, R. Raga, and G. Cerminara, “Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill,” Waste Manag., Vol. 55, pp. 83–92, 2016.
[57]  M. Ebrahimi and S. A. Jazayeri, “Effect of hydrogen addition on RCCI combustion of a heavy duty diesel engine fueled with landfill gas and diesel oil,” Int. J. Hydrogen Energy, 2019.
[58]  D. Hoornweg and P. Bhada-Tata, “What a waste: a global review of solid waste management,” 2012.
[59]  M. S. Hassanvand, R. Nabizadeh, and M. Heidari, “Municipal solid waste analysis in Iran,” Iran. J. Heal. Environ., Vol. 1, No. 1, pp. 9–18, 2008.
[60]  M. R. A. Moghadam, N. Mokhtarani, and B. Mokhtarani, “Municipal solid waste management in Rasht City, Iran,” Waste Manag., Vol. 29, No. 1, pp. 485–489, 2009.
[61]  A. Jamshidi, F. Taghizadeh, and D. Ata, “Sustainable municipal solid waste management (case study: Sarab County, Iran),” Ann. Environ. Sci., Vol. 5, No. 1, p. 7, 2011.
[62]  Dashti.B, “Biomass & Bioenergy in Iran, Ministry of Energy, Renewable Energy Organization of IRAN (SUNA), Department of Biomass, Biomass Energy Office Manager, Tehran, February,” Dashti, B. (2016). Biomass Bioenergy Iran, Minist. Energy, Renew. Energy Organ. IRAN (SUNA), Dep. Biomass, Biomass Enery Off. Manag. Tehran, February, 2016.
[63]  S. E. Hosseini, A. M. Andwari, M. A. Wahid, and G. Bagheri, “A review on green energy potentials in Iran,” Renew. Sustain. Energy Rev., Vol. 27, pp. 533–545, 2013.
[64]  M. S. Ardebili, B. Ghobadian, G. Najafi, and A. Chegeni, “Biodiesel production potential from edible oil seeds in Iran,” Renew. Sustain. Energy Rev., Vol. 15, No. 6, pp. 3041–3044, 2011.
[65]  B. Ghobadian, “Liquid biofuels potential and outlook in Iran,” Renew. Sustain. Energy Rev., Vol. 16, No. 7, pp. 4379–4384, 2012.
[66]  S. Kim and B. E. Dale, “Global potential bioethanol production from wasted crops and crop residues,” Biomass and bioenergy, Vol. 26, No. 4, pp. 361–375, 2004.
[67]  Agricultural Ministry of Iran., “In:Statisticalbookof2008,vol.1,part 1. Availableat: ⟨http://maj.ir/portal/Home/Default.aspx?CategoryID=20ad5e49- c727-4bc9-9254-de648a5f4d52⟩,” 2008.
[68]  L. Rafati, M. RahmaniBoldaji, and M. Khodadadi, “Waste to Energy: Challenges and Opportunities in Iran,” J Env. Heal. Sustain Dev, Vol. 1, No. 3, pp. 163–172, 2016.
[69]  “British Petroleum Statistical Review of World energy,” 2013.
[70]  M. A. Abduli and E. Azimi, “Municipal waste reduction potential and related strategies in Tehran,” Int. J. Environ. Res., Vol. 4, No. 4, pp. 901–912, 2010.
[71]  Municipality of Tehran, “Municipality, Center for Studies and Planning of Tehran,” 2014.
[72]  S. E. Hosseini, A. M. Andwari, M. A. Wahid, and G. Bagheri, “A review on green energy potentials in Iran,” Renew. Sustain. Energy Rev., Vol. 27, pp. 533–545, 2013.
[73]  IPCC, “Intergovernmental Panel on Climate Change, (IPCC), ,” 2019.
[74]  C. S. Psomopoulos, A. Bourka, and N. J. Themelis, “Waste-to-energy: A review of the status and benefits in USA,” Waste Manag., Vol. 29, No. 5, pp. 1718–1724, 2009.
[75]  M. Mohammadnejad, M. Ghazvini, T. M. I. Mahlia, and A. Andriyana, “A review on energy scenario and sustainable energy in Iran,” Renew. Sustain. Energy Rev., Vol. 15, No. 9, pp. 4652–4658, 2011.
[76]  A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, “Microalgae as a sustainable energy source for biodiesel production: a review,” Renew. Sustain. Energy Rev., Vol. 15, No. 1, pp. 584–593, 2011.
[77]  G. Najafi, B. Ghobadian, and T. F. Yusaf, “Algae as a sustainable energy source for biofuel production in Iran: a case study,” Renew. Sustain. Energy Rev., Vol. 15, No. 8, pp. 3870–3876, 2011.
[78]  OPEC, “The Organization of the Petroleum Exporting Countries,” 2019.
[79]  The World Bank, “Municipal Solid Waste Incineration,” 2000.
[80]  J.Penman et al., “good practice guidance and uncertainty management in national greenhouse gas inventories,” 2001.
[81]  J. Tang, “A Cost‐Benefit Analysis of Waste Incineration with Advanced Bottom Ash Separation Technology for a Chinese Municipality–Guanghan,” No. September, p. 79, 2012.
[82]  A. Bejan and G. Tsatsaronis, Thermal design and optimization. John Wiley & Sons, 1996.
[83]  M. Rodriguez, “Cost-benefit analysis of a waste to energy plant for Montevideo; and waste to energy in small islands,” Columbia Univ. 2015 Feb. 27, 2011.
[84]  A. Karagiannidis, Waste to energy. Springer, 2012.
[85]  M. Bilek, M. Lenzen, C. Hardy, and C. Dey, “Life-cycle energy and greenhouse gas emissions of nuclear power in Australia,” Univ. Sydney, Vol. 181, 2006.
[86]  U. S. EIA, “Energy Information Administration (2014b),‘Annual Energy Outlook 2014 with projections to 2040’, p,” MT-23, 2016.
[87]  H. Hondo, “Life cycle GHG emission analysis of power generation systems: Japanese case,” Energy, Vol. 30, No. 11–12, pp. 2042–2056, 2005.
[88]  A. Evans, V. Strezov, and T. J. Evans, “Assessment of sustainability indicators for renewable energy technologies,” Vol. 13, pp. 1082–1088, 2009.
[89]  K. Zoroufchi, B. A. Safaiyan, D. F. F. Khalili, N. M. Shakerkhatibi, and H. H. G. H. Safari, “Municipal solid waste characterization and household waste behaviors in a megacity in the northwest of Iran,” Int. J. Environ. Sci. Technol., 2018.
[90]  H. Zhou, A. Meng, Y. Long, Q. Li, and Y. Zhang, “An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value,” Renew. Sustain. Energy Rev., Vol. 36, pp. 107–122, 2014.
[91]  A. H. Ghorashi and A. Rahimi, “Renewable and non-renewable energy status in Iran: Art of know-how and technology-gaps,” Renew. Sustain. Energy Rev., Vol. 15, No. 1, pp. 729–736, 2011.
[92]  H. Bakhoda, M. Almassi, N. Moharamnejad, R. Moghaddasi, and M. Azkia, “Energy production trend in Iran and its effect on sustainable development,” Renew. Sustain. Energy Rev., Vol. 16, No. 2, pp. 1335–1339, 2012.
[93]  M. Heshmatzadeh, “Iran and oil sociology of political sociology of oil in Iran,” Tehran Recognit. Cent. Islam Iran’s, 2000.
[94]  “Renewable Energy and Energy Efficiency Organization of the Ministry of Energy,” 2017. [Online]. Available: http://www.satba.gov.ir/en/home.
[95]  C. D. Cooper, B. Kim, and J. MacDonald, “Estimating the lower heating values of hazardous and solid wastes,” J. Air Waste Manage. Assoc., Vol. 49, No. 4, pp. 471–476, 1999.
[96]  L. Meraz, M. Oropeza, and A. Dominguez, “Prediction of the combustion enthalpy of municipal solid waste,” Chem. Educ., Vol. 7, No. 2, pp. 66–70, 2002.
[97]  A. Licata, M. Babu, and W. Carlson, “The application of activated carbon enhanced lime for controlling acid gases, mercury, and dioxins from MWCS,” Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., Vol. 41, No. CONF-960376, 1996.
[98]  S. Azami, M. Taheri, O. Pourali, and F. Torabi, “Energy and exergy analyses of a mass-fired boiler for a proposed waste-to-energy power plant in Tehran,” Appl. Therm. Eng., Vol. 140, pp. 520–530, 2018.
[99] T. Rand, J. Haukohl, and U. Marxen, Municipal solid waste incineration: requirements for a successful project, Vol. 462. World Bank Publications, 2000.
[100] C. Ferreira, A. Ribeiro, and L. Ottosen, “Possible applications for municipal solid waste fly ash,” J. Hazard. Mater., Vol. 96, No. 2–3, pp. 201–216, 2003.
[101] T. Mangialardi, A. E. Paolini, A. Polettini, and P. Sirini, “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices,” J. Hazard. Mater., Vol. 70, No. 1–2, pp. 53–70, 1999.
[102] X.-G. Li, Y. Lv, B.-G. Ma, Q.-B. Chen, X.-B. Yin, and S.-W. Jian, “Utilization of municipal solid waste incineration bottom ash in blended cement,” J. Clean. Prod., Vol. 32, pp. 96–100, 2012.
[103] J. Pera, L. Coutaz, J. Ambroise, and M. Chababbet, “Use of incinerator bottom ash in concrete,” Cem. Concr. Res., Vol. 27, No. 1, pp. 1–5, 1997.
[104] H.-K. Kim and H.-K. Lee, “Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete,” Constr. Build. Mater., Vol. 25, No. 2, pp. 1115–1122, 2011.
[105] G. Mitterbauer, S. Skutan, and H. Rechberger, “Charakterisierung der Rostasche der MVA Dürnrohr im Hinblick auf die Rückgewinnung von Metallen (Projekt ChaRo),” Bericht für AVN–Abfallverwertung Niederösterreich Ges. mbH, Österreich, S, Vol. 151, 2009.
[106] H. Rechberger, “WTE: Decreasing the Entropy of Solid Wastes and Increasing Metal Recovery,” Recover. Mater. Energy from Urban Wastes A Vol. Encycl. Sustain. Sci. Technol. Second Ed., pp. 183–196, 2019.
[107] S. Skutan and H. Rechberger, “Bestimmung von Stoffbilanzen und Transferkoeffizienten für die Linie II der MVA Wels. Final Report,” Inst. Water Qual. Resour. Waste Manag. Vienna Univ. Technol., 2007.
[108] TWMO, “Statistics Report on 2013. Tehran Waste Management Organization, Tehran Municipality, Iran,” 2014.
[109] N. B. Klinghoffer, N. J. Themelis, and M. J. Castaldi, “Waste to energy (WTE): an introduction,” in Waste to Energy Conversion Technology, Elsevier, 2013, pp. 3–14.
[110] P. H. Brunner and J. Fellner, “Setting priorities for waste management strategies in developing countries,” Waste Manag. Res., Vol. 25, No. 3, pp. 234–240, 2007.