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Abstract 

Finding a superior evaluation of an irreversible actual heat engine (irreversible Carnot heat engine) can be 

mentioned as the substantial purpose of this work. The considered criteria are Ecological Coefficient of 

Performance (ECOP), exergetic performance coefficient thermo-economic, ecological-based thermo-

economic, and ecologico-economical functions. These criteria are optimized by implementing NSGA II and 

thermodynamic analysis. The irreversibility of the system is considered for the work assessment, and 

consequently, two states are specified in the optimization procedure. The findings associated with every 

scheme are assessed independently. In the first scenario, maximizing the power output, the first law efficiency 

of the system, and the dimensionless ecological-based thermo-economic function (𝑓
𝐸
) are set as the target. In 

the second scenario, the three objective functions power output (𝑊̇), efficiency (𝜂), and dimensionless 

ecologico-economical (𝑓
𝐸𝐶

) are simultaneously maximized. To be clear, the coupled multi-objective 

evolutionary approaches (MOEAs) and non-dominated sorting genetic algorithm (NSGA-II) approach are 

presented. Comparison of the three prominent approaches LINAMP, TOPSIS, and FUZZY is performed in 

decision-making. Ultimately, error analysis of the results based on the maximum absolute percentage error is 

carried out. According to the results obtained, in the first scenario, the appropriate results are the result of the 

decisions made by TOPSIS and LINAMP with a deviation index equal to 0.322 from the ideal ratio of this 

scenario. In the second scenario, the best decision-making results are achieved by the TOPSIS method with a 

deviation index equal to 0.104 from the ideal state for this scenario. 

 

Keywords: Ecological coefficient of performance; Ecological-based thermo-economic function; Exergetic 

performance coefficient thermo-economic; Optimization; Decision-making. 

1. Introduction 

Optimization of thermal systems is now one of the 

main characters of energy management [1–8] due 

to the non-renewable energy resource, 

environmental pollution, and costs. As the Carnot 

cycle is an ideal reversible system, it provides the 

highest amount of efficiency and work output. This 

ideal model provides an investigation of the actual 

system performance under the effect of 

irreversibilities [9]. Novikov [10] and Curzon and 

Ahlborn [11] have presented a novel cycle 

considering external irreversibilities. They 

presented the first endo-reversible heat engine. The 

irreversibilities of this kind of engines are caused 

by heat transfer. Many optimizations have been 

done for various thermodynamic cycles using the 

finite time thermodynamic (FTT) method; the 

references [12–18] present a number of them. One 

of the common methods named ecological function 

was firstly presented by Angulo Brown [19]. This 

function describes 𝐸 = 𝑊̇ − 𝑇𝐿𝑆̇𝑔𝑒𝑛;  ; E alleviates 

the entropy generation and modifies the power 

output up to 10% in comparison with the Curzon–

Ahlborn engine [19]. Yan has remodeled this 

presentation as 𝐸 = 𝑊̇ − 𝑇0𝑆̇𝑔𝑒𝑛 [20]. Emin 

Açıkkalp [21] has investigated the thermodynamic 

optimization criteria for the actual power 

generating thermal cycles, reporting that the 

ecological function criterion is the most suitable 

optimization method among the other methods for 

an irreversible Carnot cycle. Açıkkalp has also 

evaluated the exergetic sustainability index for an 

irreversible Carnot refrigerator [22].  Gülcan Özel 

[23] has evaluated four different thermo-

environmental criteria for an actual heat engine. He 
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has reported the ecologico-environmental method 

as the most convenient thermo-environmental 

method among the other methods. He has also 

reported the ecologico-economic criteria as the key 

thermo-economic ones for an irreversible Carnot 

heat engine [24]. Chen has selected power output 

along with efficiency as the objective functions, 

and has examined the heat engine’s optimum 

performance [25]. Ozcaynak et al. have 

investigated an internal irreversible radiative heat 

engine by the FTT approach. They introduced the 

cycle-irreversibility parameter R as the key 

character of the radiative heat engine [26]. Cheng 

and Chen have employed ecological optimization 

considering the finite thermal capacitance rates 

[27]. Some more comprehensive works are Xia 

[28], Chen [29], and Zhu and colleagues. [30]. 

Ibrahim et al. have introduced the “coefficient of 

irreversibility” in order to consider the internal 

irreversibilities [31]. De Vos [32] has presented a 

mathematical thermo-economical design of an 

endo-reversible heat engine. Sahin and Kodal [33] 

have investigated an endo-reversible heat engine 

and a heat pump utilizing the refrigerator cooling 

and heat pump heating as the objective functions. 

The references [34–37] are some research works 

that have employed the thermo-economic and 

exergoeconomic approaches. The ecological-based 

thermo-economic function is a different thermo-

economic standard represented by Barranco-

Jimenez [38]. This function defines the heat engine 

thermo-economic performance of its highest 

ecological states. In the references [34–37], the 

economic criteria entitled ecologico-economical 

function are reviewed. Still, a comprehensive 

examination of the ecologico-economical function 

has not been performed yet. 

A number of studies can be found in the literature 

on the subject of ecological optimization [39–41]. 

ECOP has been utilized for different systems [42–

44]. In order to establish a correlation between 

exergy and exergy destruction in a system, a 

performance coefficient entitled Exergetic 

Performance Criteria (EPC) was presented [45, 

46]. Several investigations of exergy by finite-time 

thermodynamics (FTT) could be found in the 

references [47, 48].  

A multi-objective optimization is a reliable 

approach for thermodynamic studies [49–51]. In 

order to solve this kind of problem, the 

evolutionary algorithm (EA) has been presented 

since the 20th century [52]. In these types of 

problems, the intention is to obtain a collection of 

paths so that the objective functions are applied for 

each solution in an almost important procedure 

[52]. The outcome is a large collection of answers 

called Pareto frontier, presenting the probable 

answers all through the function zone. This method 

has generally been utilized in many studies [37, 

53–56]. 

In [53, 54], using the evolutionary algorithms, a 

creative approach is improved for the objective of 

determining the power of the solar Stirling heat 

engine. A thermo-economic optimization of the 

Stirling heat pump has been presented in [56], 

employing NSGA-II. 

In the present research work, two optimization 

states are presented for the actual heat engine cycle. 

In the first scenario, maximizing the power output 

(𝑊̇), the first law efficiency of the system and the 

dimensionless ecological-based thermo-economic 

function (𝑓
𝐸
) are set as the target. The three 

objective functions to be maximized in the next 

scenario are power output (𝑊̇), efficiency (η), and 

dimensionless ecologico-economical (𝑓
𝐸𝐶

). The 

uniqueness of this work is for presenting the 

coupled multi-objective evolutionary approaches 

(MOEAs) and non-dominated sorting genetic 

algorithm (NSGA-II) approach on a system. 

2. Thermodynamic study 

During this research work, an irreversible Carnot 

heat engine is studied. The studied model design is 

shown in figure 1. The heat sink and heat source 

are supposed to be infinite. TH, TL, TE, and TC are 

the heat source, heat sink, evaporator, and 

condenser temperature, respectively. 

 
Figure 1. Diagram of irreversible Carnot heat engine 

(ICHE). 

 

The heat input is as follows (kW): 

 𝑄̇
𝐻

= 𝛼(𝑇𝐻 − 𝑇𝐸) (1) 
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in which α expresses the heat conductance of the 

hot side (kW/K). The system heat rejection (kW) 

can be provided as follows: 

𝑄̇
𝐿

= 𝛽(𝑇𝐶 − 𝑇𝐿) (2) 

in which β indicates the heat conductance of the 

cold side (kW/K). According to the first law of 

thermodynamics, the power output of the system is 

as follows: 

𝑊̇ = 𝑄̇
𝐻

− 𝑄̇
𝐿
 (3) 

Equation (4) represents the Clausius inequality 

derived by the second law of thermodynamics: 

𝑄̇
𝐻

𝑇𝐸

−
𝑄̇

𝐿

𝑇𝐶

≤ 0 
(4) 

By applying the internal irreversibility parameter 

(I) that is dimensionless, inequality can be 

expressed as equality. The heat engine is endo-

reversible and internally irreversible when I = 1 and 

I > 1, respectively [31]: 

𝐼
𝑄̇𝐻

𝑇𝐸

=
𝑄̇𝐿

𝑇𝐶

 
(5) 

Irreversibilities of the system are measured by the 

exergy destruction rate, which can be calculated 

like: 

𝐸𝑥𝐷 = 𝑇0 (
𝑄̇

𝐿

𝑇𝐿

−
𝑄̇

𝐻

𝑇𝐻

) 
(6) 

The system first law efficiency can be calculated as 

follows: 

𝜂 =
𝑊̇

𝑄̇𝐻

= 1 −
𝐼

𝑥
 

(7) 

The ecological function (kW) can be determined 

by: 

𝐸𝐶𝐹 = 𝑊̇ − 𝐸𝑥𝐷 (8) 

The cost associated with the per-unit work output 

described as the thermo-economic function (kW/$) 

is: 

𝐹 =
𝑊̇

𝑐1𝑚 + 𝑐2𝑄̇𝐻 + 𝑐3𝐸𝑥𝐷 + 𝑐4𝑊̇
 

(9) 

where m is the required total heat transfer area (m2) 

of the system; and c1, c2, and c3 are the capital, fuel, 

and environmental costs ($/kW), respectively. 

c4 ($/kW) is also defined as: 

𝑐4 = 𝑐5 + 𝑐6 (10) 

where c5 expresses the capital recovery factor 

multiplied by the investment cost per unit power 

output ($/kW) and c6 is the maintenance as well as 

the operation cost ($/kW). The ecological-based 

thermo-economic function (kW/$) is determined as 

well [38]: 

𝐹𝐸 =
𝐸𝐶𝐹

𝑐1𝑚 + 𝑐2𝑄̇
𝐻

+ 𝑐3𝐸𝑥𝐷 + 𝑐4𝑊̇
 

(11) 

In this method, the cost of the ecological function 

is taken into account, which makes it possible to 

reach a minimum difference between the lost work 

costs and the power output. The ecologico-

economical function is defined as: 

𝐹𝐸𝐶 = 𝑐5𝑊̇ − 𝑐3𝐸𝑥𝐷 (12) 

Throughout the techniques in the references [34, 

38], the thermodynamic examinations were 

performed (equations (13)–(17)): 

𝑥 =
𝑇𝐸

𝑇𝐶

 
(13) 

𝑦 =
𝛼

𝛽
 (14) 

𝑧 = 𝛼 + 𝛽 (15) 

𝑇𝐸 =
(𝑇𝐻𝐼𝑦 + 𝑥𝑇𝐿)

(1 + 𝐼𝑦)
 

(16) 

𝑄̇
𝐻

=
𝑦𝑧(𝑇𝐻 − 𝑥𝑇𝐿)

(1 + 𝑦)(1 + 𝐼𝑦)
 

(17) 

The dimensionless ecological-based thermo-

economic and dimensionless ecologico-

economical, respectively, can be presented as 

follow: 

𝑓
𝐸

= 𝐹𝐸𝑐4 (18) 

𝑓
𝐸𝐶

=
𝐹𝐸𝐶

𝑊𝑐4

 
(19) 

 

3. Multi-objective optimization  

As mentioned earlier, for the aim of optimizing the 

actual heat engine system, the multi-objective 

optimization was applied through EA in order to 

evaluate the preceding parameters of the cycle 

using the genetic algorithm (GA) tools. The 

following figure shows a schematic representation 

of GAs. 

 

 

Figure 2. Multi-objective EA algorithm [57, 58]. 

3.1. Objective functions, decision variables, and 

constraints 

The objective functions of the first state comprising 

power output, efficiency, and (𝑓
𝐸
) are described by 
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equations (3, 7, and 18).  

The objective functions of the next state 

comprising power output, efficiency, and (𝑓
𝐸𝐶

) are 

described by equations (3, 7, and 19).  

The four chosen decision variables in our 

investigations are: 

x: fluid temperature ratio (𝑥 =
𝑇𝐸

𝑇𝐶
), 

y: parameter of the heat conductance rate (𝑦 =
𝛼

𝛽
), 

z:  sum of heat conductance rate (𝑧 = 𝛼 + 𝛽), 

𝜏: temperature ratio. 

Each one of the decision parameters should be in a 

proper interval, even though they would be diverse 

in the optimization process. In order to achieve the 

objective functions, the following constraints are 

considered:    
1 ≤ 𝑦 ≤ 2 (20) 

1 ≤ 𝑧 ≤ 20 (21) 
1 ≤ 𝑥 ≤ 5 (22) 
3 ≤ 𝜏 ≤ 6 (23) 

3.2. Multi-objective optimization decision-

making  

With the purpose of collecting the finest optimal 

path from the available paths within the multi-

objective optimization methods, decision-making 

is essential. The decision-making approaches are 

implemented to select a superior optimal path from 

the Pareto frontier. Euclidean non-

dimensionalization and fuzzy non-

dimensionalization are two methods of non-

dimensionalization. 

3.2.1. Non-dimensionalization methods 

3.2.1.1. Euclidean non-dimensionalization 

𝐹𝑖𝑗
𝑛  is the objective matrix of different Pareto 

frontier solutions, which can be calculated as 

follows: 

𝐹𝑖𝑗
𝑛 =

𝐹𝑖𝑗

√∑ (𝐹𝑖𝑗
2 )𝑚

𝑖=1

 (24) 

3.2.1.2. Fuzzy non-dimensionalization 

Throughout this approach, a non-dimensioned 

objective, 𝐹𝑖𝑗
𝑛 , can be determined as below: 

𝐹𝑖𝑗
𝑛 =

𝐹𝑖𝑗−min(𝐹𝑖𝑗)

max(𝐹𝑖𝑗)−min(𝐹𝑖𝑗)
(maximization) (25a) 

𝐹𝑖𝑗
𝑛 =

max (𝐹𝑖𝑗)−𝐹𝑖𝑗

max(𝐹𝑖𝑗)−min(𝐹𝑖𝑗)
 (minimization) (25b) 

The most renowned kind of decision-making 

approaches like LINMAP, TOPSIS, and fuzzy 

Bellman-Zadeh are applied for the aim of 

providing the optimal response during this 

assessment. To be clear, LINMAP and TOPSIS use 

the Euclidean non-dimensionalization, whereas the 

latter approach uses fuzzy non-dimensionalization.   

3.3. Decision-making approaches 

3.3.1. Bellman-Zadeh approach 

In the Bellman-Zadeh approach, defining the 

connection of all fuzzy norms and constrains is 

examined as the final decision. The details for the 

methods of ascertainment for the membership 

function are presented in [57, 58]. 

3.3.2. LINMAP approach 

In the LINMAP decision-making approach, the 

“ideal point” can be considered as the point on the 

Pareto frontier where every objective is optimized 

regardless of taking the other objectives into 

account. The optimized amount of objectives could 

not be equivalent in any case. Therefore, the stated 

ideal data point is not positioned on the Pareto 

frontier. Lastly, the nearest route to an ideal data 

point in space is considered as a preceding 

optimum route. The references [57, 58] provide 

more details of the procedure. 

3.2.3. TOPSIS approach 

In accordance with the TOPSIS decision-making 

approach, a “non-ideal point” that is determined as 

the latitude all over the objective spatial is 

presented. The longest and shortest spacings by the 

non-ideal point are simultaneously chosen as the 

last path. The references [57, 58] provide more 

details for the procedure. 

4. Results and discussion 

In this part, the analyzed system’s results are 

presented. The examination characters of the study 

are listed in table 1. 

As depicted in figure 3, increasing the ratio of fluid 

temperature (x) leads to an increase in the 

dimensionless ecologico-economical. It should be 

noticed that enhancing the temperature ratio (𝜏) 

leads to an increase in the exergy destruction and 

the work losses, and as a result, the dimensionless 

ecologico-economical decreases. 

As presented in figure 4, the power output (W) 

enhances with the enhancement of the ratio of fluid 

temperature (x) till the power output (W) is 

obtained, and subsequently, reduces with the 

enhancement of the fluid temperature ratio (x). It 

should be noticed that the heat entering the system 

increases, and as a result, the power output 

increases as well by increasing the temperature 

ratio (𝜏).  
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Table 1. Parameters of the assessment. 

Parameter Unit Value 

LT  
K 300 

0T  
K 298.15 

I  - 1.05 

1c  
$/m2 10 

2c  
$/kW 100 

3c  
$/kW 2 

5c  
$/kW 5 

6c  
$/kW 2 

7c  
$/kW 6 

m  m2 1000 

 

 
Figure 3. Fluid temperature ratio ( x ) at various values of 

the temperature ratio (𝝉) on the dimensionless ecologico-

economical in (z=10, y=2). 

 
Figure 4. Effects of the ratio of fluid temperature (x) at 

various values of the temperature ratio (𝝉) on the power 

output in (z=10, y=2). 

As shown in figure 5, 𝑓𝐸𝐶 enhances by enhancing 

the fluid temperature ratio. Conversely, as depicted 

in Figure 5, decreasing and/or increasing the value 

of the sum of heat conductance rate (Z) is not 

effective on the amount of the ecologico-

economical (𝑓𝐸𝐶).  

 

Figure 5. Fluid temperature ratio of (x) at various values 

of the sum of heat conductivity rate (z) on the power 

output in (𝝉 = 𝟓, 𝒚 = 𝟐). 

As shown in Fig. 6, by augmenting the fluid 

temperature ratio (x), the power output (W) 

enhances until the power output (W) is obtained, 

and subsequently, reduces by a rise in the fluid 

temperature ratio (x). It should be noticed that by 

increasing the sum of heat conductance rate (z), the 

heat entering the system increases, and as a result, 

the power output increases. 

 
Figure 6. Fluid temperature ratio (x) at various values of 

the sum of heat conductivity rate (z) on the power output 

in (𝝉 = 𝟓, 𝒚 = 𝟐). 

4.1. Results of first scenario 

By means of multi-objective optimization with the 

help of the NSGA-II method, the power output and 

the system’s efficiency and dimensionless 

ecological-based thermo-economic function (𝑓𝐸) 

are maximized all together. The design parameters 

of the optimization process are the fluid 

temperature ratio (𝑥 =
𝑇𝐸

𝑇𝐶
), parameter associated 
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with the heat conductance rate (𝑦 =
𝛼

𝛽
), sum of heat 

conductance rate (𝑧 = 𝛼 + 𝛽), and temperature 

ratio (𝜏).  

Figure 7 shows the frontier of optimum Pareto for 

the objective function power output and the 

system’s first law efficiency and dimensionless 

ecological-based thermo-economic function (𝑓𝐸), 

also the optimum outcomes associated with the 

decision-making methods. The change ranges of 

the results for the power output is 1139.792-

2968.873 (kW) and 0.583-0.790 for efficiency, and 

for 𝑓𝐸 is 0.022-0.046 (kW). 

 
Figure 7. Pareto optimal frontier in the objectives’ space 

for the first scenario. 

The optimal outcomes provided for the objective 

functions and decision variables by the decision-

making methods for the first scenario are listed in 

table 2. It illustrates the characteristics of the 

optimum solutions gained in the first scenario by 

the decision-making approaches. The deviation 

index is defined as: 

 

 

𝑑+ = √(𝜂 − 𝜂𝑛)2 + (𝑊 − 𝑊𝑛)2+(𝑓𝐸 − 𝑓𝐸,𝑛)2 

(26) 

𝑑− = √(𝜂 − 𝜂𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2 + (𝑊 − 𝑊𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2+(𝑓𝐸 − 𝑓𝐸,𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2 (27) 

𝑑 =
𝑑+

(𝑑+) + (𝑑−)
 

 

(28) 

𝜂𝑛, 𝑊𝑛, and 𝑓𝐸,𝑛  indicate Euclidian of the first law 

efficiency, power output, and 𝑓𝐸. 

A least deviation was obtained by the TOPSIS and 

LINMAP methods; consequently, the selected final 

optimum answer by these approaches was 

considered to be the optimum state of the heat 

engine in the first scenario. 

 

Table 2. Decision-making of multi-objective optimal solutions for the first scenario. 

 

Decision 

Making Method 

Decision variables Objectives 

Deviation 

index from 

the ideal 

solution (d) 

x z y 𝜏 η W 𝑓𝐸  

TOPSIS 3.736 19.994 1.013 6.000 0.719 2379.814 0.039 0.322 

LINMAP 3.7360 19.994 1.013 6.000 0.719 2379.814 0.039 0.322 

Fuzzy 3.763 19.994 1.017 6.000 0.721 2357.833 0.039 0.334 

Ideal solution - - - - 0.790 2968.873 0.046 0 

Non-ideal 

solution 

- - - - 0.583 1139.729 0.022 ∞ 
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In order to assess the accuracy of the decision-

making objectives, the mean absolute percentage 

error (MAPE) evaluation was employed. For the 

aim of measuring MAPE, 30 iterations of every 

approach were carried out. Table 3 presents MAAE 

(maximum absolute percentage error) and MAPE 

of the aforementioned approaches.

Table 3. Error analysis based on the mean absolute percent error (MAPE) method for the first scenario. 

Decision 

Making 

Method 

TOPSIS LINMAP Fuzzy 

Objectives η W 𝑓𝐸 η W 𝑓𝐸 η W 𝑓𝐸

Max Error 

% 

0.038 0.048 0.032 0.041 0.051 0.032 4.992 6.926 2.589 

Average 

Error % 

0.028 0.036 0.022 0.029 0.036 0.022 3.352 4.651 1.738 

4.2. Results of second scenario 

The objective optimization functions in the second 

scenario comprising W, η , and dimensionless 

ecologico-economical (𝑓𝐸𝐶) (to be maximized) are

explained by equations (3, 7, and 19). Figure 8 

presents the Pareto optimal frontier for the second 

scenario optimization. 

Figure 8. Pareto optimal frontier in the objectives’ 

space for the second scenario. 

Table 4 represents the optimum results in the 

second scenario. Also the deviation index can be 

calculated as follows: 

𝑑+ = √(𝜂 − 𝜂𝑛)2 + (𝑊 − 𝑊𝑛)2+(𝑓𝐸𝐶 − 𝑓𝐸𝐶,𝑛)2

𝑑− = √(𝜂 − 𝜂𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2 + (𝑊 − 𝑊𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2+(𝑓𝐸𝐶 − 𝑓𝐸𝐶,𝑛,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)2 

(29) 

(30) 

𝑑 =
𝑑+

(𝑑+) + (𝑑−)

(31) 

𝜂𝑛, 𝑊𝑛, and 𝑓𝐸𝐶,𝑛 indicate the Euclidian form of the

objectives. As the minimum deviation is obtained 

by the TOPSIS approach, it is considered as the 

final optimal solution for the thermal heat engine 

cycle in the second scenario.  
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Table 4.Decision-making of multi-objective optimal solutions for the second scenario. 

Decision Making 

Method 

Decision variables Objectives 

Deviation index 

from the ideal 

solution (d) 

x z y 𝜏 η W 𝑓𝐸𝐶

TOPSIS 3.375 19.992 1.027 6.000 0.689 2643.354 0.655 0.104 

LINMAP 3.460 19.994 1.027 6.000 0.696 2586.464 0.658 0.123 

Fuzzy 4.134 19.990 1.031 6.000 0.746 2034.523 0.681 0.310 

Ideal solution - - - - 0.790 2950.314 0.710 0 

Non-Ideal solution - - - - 0.609 1.904 0.610 ∞ 

For the error analysis, MAPE was used. Hence, 30 

iterations of every approach were carried out to 

provide an ultimate route by the decision-making 

approaches. Table 5 illustrates the MAAE and 

MAPE results of the aforementioned decision-

making methods.

Table 5. Error analysis based on the mean absolute percent error (MAPE) method for the second scenario. 

Decision 

Making 

Method 

TOPSIS LINMAP Fuzzy 

Objectives η W 𝑓𝐸𝐶 η W 𝑓𝐸𝐶 η W 𝑓𝐸𝐶

Max Error % 0.156 0.041 0.091 0.196 0.052 0.126 4.088 1.636 1.959 

Average 

Error% 

0.050 0.013 0.041 0.102 0.027 0.073 1.249 0.503 0.598 

5. Conclusion

During this work, the thermodynamic analysis of 

an irreversible actual heat engine was carried out. 

The extra influences of the fluid temperature ratio, 

heat parameter, conductance rate, sum of heat 

conductance rate, and temperature ratio were taken 

into account in the assessment of the power, 

efficiency, dimensionless ecological-based 

thermo-economic function (𝑓𝐸), and dimensionless

ecologico-economical (𝑓𝐸𝐶) of the actual heat

engine. Furthermore, the optimal state of the 

presented objective functions was determined. 

Through the applied multi-objective optimization 

process, four parameters including the fluid 

temperature ratio (𝑥 =
𝑇𝐸

𝑇𝐶
), parameter of the heat 

conductance rate (𝑦 =
𝛼

𝛽
), sum of heat conductance 

rate (𝑧 = 𝛼 + 𝛽) and ratio of fluid temperature heat 

source/sink, and (𝜏 =
𝑇𝐻

𝑇𝐿
) were considered as the 

decision characters. In order to determine a 

decisive solution from the results obtained with the 

help of multi-objective optimization, the decision-

making techniques were implemented and the 

outputs were evaluated by the mean of error 

analysis. The coupled multi-objective evolutionary 

approaches (MOEAs) and non-dominated sorting 

genetic algorithm (NSGA-II) approach was 

presented. A comparison of the three prominent 

approaches LINAMP, TOPSIS, and FUZZY was 

performed in decision-making. Ultimately, the 

error analyses of the results were carried out. In the 

first scenario, the appropriate results were the result 

of the decisions made by TOPSIS and LINAMP 

with a deviation index equal to 0.322 from the ideal 

ratio of this scenario. In the second scenario, the 
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best decision-making results were achieved by the 

TOPSIS method with a deviation index equal to 

0.104 from the ideal state for this scenario. 

Nomenclature 

E Ecological function 

W Power output 

genS Entropy generation rate 

Ef Dimensionless ecological-based 

thermo-economic function 

ECf Dimensionless ecologico-economical 

 First law efficiency of the system 

TH Heat source temperature 

TL Heat sink temperature 

TC Condenser temperature 

ET Evaporator temperatures 

0T Ambient temperature 

HQ Entering heat to the system 

LQ System heat rejection 

  Heat conductance of the hot side 

β Heat conductance of the cold side 

(kW/K) 

I Dimensionless internal irreversibility 

parameter 

x

Ratio of fluid temperature (

E

C

T
x

T


) 
y Parameter of the heat conductance 

rate (
y






) 

z  Sum of heat conductance rate (
z   

) 

  Temperature ratio 

c1 Capital cost ($/kW) 

c2 Fuel cost ($/kW) 

c3 Environmental cost ($/kW) 

c4 

c5 Capital recovery factor multiplied by 

the investment cost per unit power 

output ($/kW) 

c6 Operation and maintenance cost 

($/kW) 

EF Ecological-based thermo-economic 

function (kW/$) 

ECF Ecologico-economical function 

n
ijF Matrix of objectives for different 

answers of the Pareto frontier 

i Index of each route on the Pareto 

frontier 
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