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Abstract 

Large amplitude inter-well oscillations in bi-stable energy harvesters have made them a proper energy 

harvesting choice due to a high energy generation. However, the co-existence of the chaotic attractor in these 

harvesters could essentially decrease their efficiency. In this work, an algorithm for detecting chaos in bi-

stable energy harvesters based on a data-gathering algorithm and estimating the largest Lyapunov exponentis 

investigated. First, a simple model of axially-loaded non-linear energy harvesters is derived. This model is 

derived using the Euler-Bernoulli beam theory and the Assumed Mode method considering the Von-Karman 

non-linear strain-displacement equation. The harvester's numerical simulation results are used in order to test 

the algorithm's efficiency and accuracy in identifying the chaotic response. The results obtained show the 

algorithm's success in detecting chaos in such systems with a minimum possible calculation cost. The effect 

of noise on the algorithm's performance is also investigated, and the results obtained show an excellent 

robustness of the algorithm to noise. It can diagnose the harvester's chaotic or harmonic behavior with noise-

contaminated data with 10% noise density. The comparison between this algorithm and the Wolf's method 

show a relatively less computation time (up to 80%) to detect chaos with a reasonable accuracy. 
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1. Introduction 

In the last decades, the aim of mitigating carbon 

emission and fossil fuels' environmental effects 

has encouraged the use of renewable energies [1]. 

There are different types of renewable energies 

including but not limited to wind, solar, 

geothermal, and biomass [2]. More recently, 

harvesting the vibration energy as a sustainable 

renewable source for power has also been an 

emerging idea, attracting the researchers' attention 

[3]. At first, the linear energy harvesters have 

been investigated by many researchers according 

to their simple modeling design and fabrication; 

however, after some years, it has been shown that 

the linear energy harvesters have some significant 

disadvantages [4]. In the recent years, the use of 

non-linear energy harvesters has been proposed by 

many researchers in order to overcome the 

drawbacks of the linear harvesters such as limited 

bandwidth and efficiency [5]. 

There are two major non-linear energy harvester 

types, which are the Duffing-type oscillators with 

mono-stability and bi-stability [6]–[8]. Among 

different non-linear energy harvesters, many 

researchers have investigated the bi-stable ones in 

order to use the non-linear large amplitude 

oscillations to increase the energy harvesting 

efficiency [9]. The large amplitude inter-well 

oscillation in bi-stable harvesters leads to a high-

performance energy harvesting, making the bi-

stable ones a proper energy harvester [10]. 

In 2008, McInnes et al. [11] proposed using the 

stochastic resonance in a bi-stable energy 

harvester. Their results showed that adding 

harmonic excitation to the primary noise 

excitation can significantly increase the harvested 

energy. In 2009, Cottone et al. [12] induced the 

post-buckling behavior in a cantilever beam using 

the electromagnetic force and used it as a bi-stable 

energy harvester. Their investigations showed that 

using a bi-stable energy harvester can increase the 

harvested energy between 400% to 600% 

compared with a similar linear counterpart. 

Naseer et al. [8] have done a comparative study of 

bi-stable energy harvesters under fluid vortex 

induction with the mono-stable ones. Their result 

indicated that the bi-stable energy harvester 
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significantly outperformed in slow wind speeds. 

In the moderate and high wind speeds, it performs 

almost better than the mono-stable energy 

harvesters. 

Mann and Owen [13] have studied the bi-stable 

energy harvester under harmonic excitation with 

varying frequency to capture the frequency 

response system. The numerical and experimental 

results of their investigation showed that escaping 

from a potential well can widen the frequency 

bandwidth of the harvester. Stanton et al. [14] 

have investigated the bi-stable energy harvester's 

behavior using the harmonic balance method. In 

their research work, they achieved a closed-form 

response to design the harvester's coupling factor 

to tune the high energy orbit's stability threshold. 

Following the research in bi-stable energy 

harvesters, Panyam et al. [15] have studied the bi-

stable energy harvester's response. Using 

numerical integration, they achieved the system's 

bifurcation diagram according to the excitation 

frequency (frequency response). Their 

investigation shows many different non-linear 

phenomena such as cyclic folding, 1T, 3T, 5T 

windows of periodic responses, chaotic response, 

and boundary crisis in the bi-stable energy 

harvester [15]. They showed that chaos in the bi-

stable energy harvester's response could 

drastically decrease the harvested energy. 

In order to overcome this issue, some researchers 

have investigated chaos control in the bi-stable 

energy harvesters [16]–[18]. Kumar et al. [16] 

have studied the chaos control in the bi-stable 

energy harvester using Linear Quadratic 

Regulators (LQR). Utilizing Ott, Grebogi, Yorke 

(OGY) [19], the control force successfully forced 

the system to oscillate in a large amplitude orbit 

rather than a co-existent chaotic attractor. Huynh 

et al. [17] have presented a controlled vortex-

induced bi-stable energy harvester. They derived 

the governing equations of motion, and then 

designed a controller using the OGY chaos 

control theory to create a stable orbit. The 

numerical and experimental studies have shown 

that the designed control system properly transfers 

the harvester's behavior from chaotic to stable 

large-amplitude orbit. 

The experimental implementation of chaos control 

in bi-stable energy harvesters requires a method 

for chaos detection from time series measured 

data [20]. The chaos control methods always use 

energy in the actuators [21]. This energy 

consumption would decrease the efficiency of the 

harvester. If the chaos control method is 

implemented without chaos detection, the control 

loop may consider higher period orbits or noise as 

chaos and consume unnecessary energy. Due to 

this, the use of chaos detection algorithm is 

inevitable. There are several ways available for 

detecting chaos from time-series data including 

Largest Lyapunov Exponent (LLE), Kolmogorov 

entropy, and correlation dimension. Harris et al. 

[22] have used the multi-scale  entropy method 

and the "0-1" test in order to detect chaos in a bi-

stable beam. The results of their work showed that 

both methods could detect chaos with an 

acceptable efficiency. However, sensitivity to 

selecting algorithm parameters in correlation 

dimension and Kolmogorov entropy made LLE a 

more proper method [23]. 

Wolf [23] has presented an algorithm to detect 

chaos from the time-series experimental data. 

Although calculating LLE is the most reliable 

method used for identifying chaos, its main 

drawbacks are the massive amount of data 

required to be processed and the calculation costs 

[24]. This cost could bring some main difficulties. 

Most of the energy harvesting systems are 

designed in micro-scales. At that scale, the 

processing power of the processors and the 

available memories are very low. During the 

calculation time, the disadvantages of the chaotic 

behavior are still there. Secondly, sometimes the 

chaotic behavior is temporal, and with lag in the 

detection, we may pass the chaotic regime and try 

to control the thing that no longer exists. 

Furthermore, the algorithm is sensitive to the 

external noise on the dataset. 

The algorithm proposed by Wolf has then been 

improved by many researchers [25]–[27] in order 

to solve the sensitivity to noise and extended run 

time. Rosenstein has proposed an m-dimensional 

gridding technique using the mean of the different 

LLE estimations to decrease the effect of external 

noise [25], leading to a robust but complex 

algorithm. Mehdizadeh [28] has proposed using 

the mean distance of points in the initial point 

neighborhood instead of the closest point. The 

proposed algorithm is robust to noise and 

accurate, and has a longer run time than the 

Rosenstein's algorithm. Zhou et al. [26], [27] have 

presented a much more fast algorithm. In that 

algorithm, they used the distance between two 

pseudo-orbits in the attractor's phase space and 

calculated the evolution of this distance 

concerning time. This algorithm is fast but it 

requires to have the exact model of the system. In 

real applications of energy harvesting, having the 

exact non-linear harvester model is a relatively 

challenging issue. Besides, the model's parameters 

can vary during the work-life of the harvester due 

to depreciation. 
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The novel, simple, non-linear Model for Axially 

Loaded Energy Harvesters (MALEH) is presented 

in this paper. In MALEH, despite Masana and 

Daqaq [29], the beam section's axial displacement 

is considered negligible, and a Von-Karman 

Strain is used to model the system. This 

assumption made the harvester model simple 

without a significant loss of accuracy and 

generality, helping the design chaos controllers. A 

new Modification of Wolf's Method (MWM) is 

utilized in this work in order to calculate LLE of a 

bi-stable piezoelectric energy harvester. MWM is 

implemented using the minimum possible 

randomly selected data points from the complete 

dataset. Unlike the Wolf's algorithm, the system's 

embedding dimension is also set up to be as equal 

as the system dimensions. Although utilizing the 

minimum data points and embedding dimension 

could affect the accuracy of the calculated LLE, 

the results obtained show that a proper detection 

of chaos is possible with this minimum 

embedding dimension. Moreover, the 

piezoelectric elements' output voltage is used as 

the time series data, so there is no need to use an 

extra sensor, which may cause extra cost and 

implementation difficulties. The algorithm is 

designed such that it can detect chaos 

simultaneously in order to prevent a long time of 

efficiency decrease. 

In Section 2 of this article, a bi-stable energy 

harvester model is presented using the Euler-

Bernoulli beam theory and the assumed mode 

method. In Section 3, a chaos detection algorithm 

is presented. The results of chaos detection and 

noise effect on the algorithm performance are 

discussed in Section 4. Section 5 concludes the 

paper. 

 

2. Modeling of bi-stable energy harvester  

In this section, an analytical model based on the 

Euler-Bernoulli beam theory and assumed mode 

method is presented for a bi-stable energy 

harvester. The harvester was assumed to be a 

buckled cantilever Euler-Bernoulli beam with a 

tip mass, representing the permanent magnet used 

to create the axial load. All the equations in this 

section were written according to the previous 

work [30]. 
 

 
Figure 1. Bi-stable piezoelectric energy harvester. 

 

Table 1. Nomenclature 

         
Geometrical axes along with length, width, and 

thickness of the beam, respectively. 

         
Displacement of the beam element concerning 

         directions 

  Time 

   Elastic potential energy of the beam 

   Normal strain in    direction 

  Young's modulus of the beam 

  Strain tensor 

   Beam stress tensor 

  
  Beam stress in     direction 

   Cross-section area of the beam 

   
Moment of the cross-section area of the substructure 

beam  

  Length of the beam 

  Width of the beam and piezoelectric layers 

  Thickness of the beam 

   Thickness of each piezoelectric layer 

   
 
    
 

 Stress in piezoelectric layers 

   
  Young's modulus of the piezoelectric layers 

    Effective piezoelectric constant 

  Voltage of each piezoelectric layer 

   Potential energy of the piezoelectric layers 

   Electric field in each piezoelectric layer 

   Cross-section area of each piezoelectric layer 

   First moment of inertia of each piezoelectric layer 

   Second moment of inertia of each piezoelectric layer 

        
Displacement of electrical load in each piezoelectric 

layer 

   
  Permittivity of the piezoelectric layer 

  Electric field tensor in the piezoelectric layer 

  Base displacement 

T Total kinetic energy 

  Mass of the tip mass 

    Work of non-conservative forces 

  Electrical load crossing the resistive load 

  Axial load 

   Axial pressure 

   Work of the axial load 

  Dimensionless displacement 

  Dimensionless damping 

  The critical axial load ratio 

  Axial load 

  Linear stiffness 

  Non-linear stiffness 

  Voltage coupling coefficient 

  Displacement coupling coefficient 

  Dimensionless time constant 

  Dimensionless amplitude of the external force  

  Dimensionless frequency of the external force 

  Dimensionless time 

* + Time-series data 

 ( ) Series representing reconstructed attractor 

   Reconstruction time delay 

 (  ) 
Euclidean distance between two nearest neighbors in 

time    

   Largest Lyapunov exponent (LLE) 

  Number of data in time-series 

  Embedding dimension 

  Number of points on the attractor 

   Standard deviation of the measured data 

       Standard deviation of the noise 

 

Figure 1 shows a schematic representation of the 

bi-stable piezoelectric energy harvester. As shown 

in this figure, the bi-stable harvester consists of a 

clamped steel substructure beam and piezoelectric 

patches that are connected in series to a resistive 
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load R. An axial force P is acting to the beam 

through the permanent magnet with mass m 

placed at the tip of the beam and the other with 

opposite poles in the harvester box, not shown in 

this figure. The whole device is under a base 

excitation with the displacement of g(t), a pure 

sine wave with a constant frequency. The 

displacement field of each element in steel sub-

structure beam according to the Euler-Bernoulli 

beam theory [31] can be written as: 
 

      
   
   

               (    ) (1) 

where    ,   ,   ,   , and   are the axis in the 

direction of beam length, perpendicular to the 

neutral plane, transverse and longitudinal 

displacements, and time, respectively. According 

to the Von-Karman strain equation, the only non-

zero strain term would be: 
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Stress in the substructure beam is: 
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where E is the elastic modulus of the beam. 

According to equations (2) and (3), the elastic 

potential energy of the sub-structure beam can be 

written as: 
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where    is the transpose of the strain matrix and 

   is the stress matrix,    is the volume of the 

substructure beam,    is the cross-section area, 

and    is the moment of inertia of the cross-

section of the sub-structure beam. According to 

[30], the stress terms for each piezoelectric plate 

can be written as: 
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in which     ,    
 , and   are the effective 

piezoelectric constant, elastic modulus, and 

voltage of each piezoelectric plate, respectively. 

The total elastic potential energy in the 

piezoelectric plates is: 
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The electrical load-displacement in each 

piezoelectric plate is: 
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in which    
  is the permittivity of the 

piezoelectric layer. The total work of the electric 

field in the piezoelectric layers is: 
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where Ae is the electrode area. The total 

displacement of every element, according to (1), 

and base displacement is: 
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where g(t) is the base displacement. According to 

(12), the total kinetic energy of the sub-structure 

beam, piezoelectric patches, and tip mass is: 
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where    and    are the mass density of the sub-

structure beam and piezoelectric layers. The non-

conservative work in resistive load is: 
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(14)         
 

where   is the electrical load crossing the 

resistive load. The axial load can be rewritten as: 
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Therefore, the work of the axial load is: 
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Utilizing the assumed mode method [31] and 

Hamilton's law [31], and using (4), (7), (11), (13), 

(14), and (16), the equations of motion for  the 

single-mode bi-stable energy harvester would be: 
 

(17) 
 ̈    ̇  (    )             (  ) 

 ̇    ̇      
 

where  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,    and   are the 

displacement, dimensionless damping of the first 

mode and dimensionless non-linear stiffness of 

the first mode, voltage coupling coefficient, 

displacement coupling coefficient, dimensionless 

time constant, dimensionless modal force for the 

first mode, and dimensionless frequency of the 

excitation and dimensionless time, respectively. 

The overdots indicate the differentiation 

concerning time. The variation in the oscillation 

frequency concerning the axial load is compared 

with the model of Masana and Daqaq [29] in 

figure 2. Although the proposed model is much 

simpler than the model presented by Masana and 

Daqaq, its prediction of the system dynamics is 

almost the same as that model.  
 

 
Figure 2. Variation in the frequency of the harvester to 

the axial load. 

In the next sections, the equation sets of (17) are 

used in order to calculate the bi-stable energy 

harvester's response and implementation of the 

chaos detection algorithm. 

 

3. Online estimation of LLE  

A chaos detection algorithm based on a new 

modification of the algorithm of Wolf et al. [23] is 

presented in this section. According to the Taken's 

embedding theory [32], the attractor can be 

reconstructed with the embedding dimension of m 

using a time series consisting of N data points 

{y}. The reconstructed attractor can be written as: 
 

(18)  ( ) (                            (   )  ) 

where τ is the reconstruction delay, and this set 

represents a point in the attractor in the 

embedding space. The reconstruction delay can be 

estimated by the autocorrelation of the time-series 

data. The time delay is equal to the delay where 

the autocorrelation data drops to 0.632 of its 

initial value [25]. After the reconstruction of the 

attractor using (18), the Euclidean distance, L(t0 ), 

between the nearest neighbor of the initial point 

Pt0(i) and itself should be calculated. Finding this 

distance after enough evolution time, let LLE be 

defined as: 
 

(19)    
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in which M=N-(m- ) τ_ . First, the whole space 

of the time-series data will be gridded concerning 

m and the grid resolution in order to improve the 

algorithm speed. After gridding the space, the 

algorithm searches in the nearest boxes to the 

point rather than the whole data points to find the 

nearest neighbor. This method will speed up the 

search procedure. It should be noted that if the 

distance between two points increases larger than 

a pre-specified value, the second point will be 

replaced with the nearest point to the first one in 

the recent evolution. This procedure will be done 

for different initial points in the time series, and 

an average number will be reported as LLE. 

To this part, our procedure is almost the same as 

the conventional procedures of finding LLE using 

a measured dataset. In the traditional algorithms, 

the aim is to find the exact value for LLE. 

However, in controlling the non-linear energy 

harvesters' chaos, there is only a need to identify 

the chaotic response. In the algorithm presented 

here, after gridding the embedding space, instead 

of working with more than 200,000 data points, 

only one point and its nearest neighbor in each m-
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dimensional box would be randomly chosen in 

order to calculate LLE rather than using the whole 

dataset. The sparse matrix calculation can be used 

with this selection to rapidly calculate the 

evolution of the distance between two points in 

time. 

The Taken's theory indicates that for an exact 

reconstruction of the attractor, the embedding 

dimension,  , should be at least greater than   
 , where   is the fractional dimension of the 

attractor. In the algorithm presented here,   is 

considered to be equal to  . With these 

modifications, one will lose the calculated LLE 

accuracy but identifying chaos would remain 

intact. This claim would be addressed in the 

results and discussion section. The algorithm is 

designed to calculate LLE of the harvester 

synchronously. A synchronous detection would 

give a chance to distinguish between the 

permanent and temporary chaotic behavior. 

Controlling chaos would cost energy, and in the 

case of the temporary chaotic behavior, there is no 

need to turn the controller on. The harvester's 

output voltage is considered to be used as the 

time-series data, and reconstructs the attractor. 

The next section presents the results and 

discussion. 

 

4. Results and discussion  

 

4.1. Results of chaos detection 

In this section, the harvester's equations of motion 

are solved using the Runge-Kutta numerical 

methods, considering the amounts of the harvester 

geometrical and material properties indicated in 

table 2. 
 

Table 2. Geometrical and material properties of the 

harvester. 
Name Symbol Value 

Beam thickness        (  ) 

Piezoelectric layer thickness        (  ) 

Beam and piezoelectric width         (  ) 

Beam length       (  ) 

Piezoelectric layer length       (  ) 

Beam's Young's modulus       (   ) 

piezoelectric layer's Young's modulus    
     (   ) 

Resistance of the resistive load       (  ) 

Piezoelectric permittivity constant    
        (

  

 
) 

Effective piezoelectric constant           (
 

 
) 

 

 

Figure 2 shows the steady-state time response of 

the dimensionless voltage considering Ω  4 and 

f=0.5. As it can be seen in this figure, the response 

is harmonic in the steady-state condition. 
 

 
Figure 3. Dimensionless voltage for large amplitude H 

inter-well oscillation. 
 

Figure 3 shows the estimated LLE for the data 

presented in figure 2. For estimating LLE, the 

embedding dimension of m=4 and N=4096 data 

points are used in 80 units of dimensionless time. 

As it can be seen in figure 3, the estimation of 

LLE is converged after about 100 iterations to 

zero, which shows the existence of a non-chaotic 

attractor, i.e. Limit Cycle Oscillations (LCO), 

which completely meets the oscillations of the 

system. 
 

 

 
Figure 4. Estimated LLE for harmonic inter-well 

oscillation. 

 

Setting f  .7 and Ω  8, the system  ehaves 

chaotically, as shown in the phase portrait 

depicted in figure 5. This figure shows the phase 

space of dimensionless velocity versus 

dimensionless displacement. The phase space 

shows the nature of the system response by 

displaying the orbits of the system response. The 

depicted orbit is non-periodic and space-limited. It 

is non-periodic since the orbit does not cover 

itself, and tends to go over the attractor's whole 

space. It is space-limited because it does not 
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exceed the limits of the large amplitude unstable 

periodic orbit found in this portrait. This type of 

response indicates a fully chaotic behavior. 

Figure 6 shows the estimation of LLE for chaotic 

data in figure 5. This figure shows that the LLE 

estimation is converged after about 800 iterations, 

and shows a positive amount indicating a chaotic 

attractor in the system. 
 

 
Figure 5. Phase portrait of the bi-stable energy harvester. 

 

 
Figure 6. Estimated LLE for chaotic motion. 

 

4.2. Effect of noise 

The LLE algorithm is defined to be used on a 

dataset, which is experimentally measured, in our 

case, voltage. As it can be expected, the 

experimentally measured data is always noise-

contaminated. Despite using different filtrations 

and other methods, some noise according to the 

experimentation circumstances is inevitable. In 

this section, the effect of noise on the efficiency of 

the algorithm is presented. In order to define the 

amount of noise first, the standard deviation of the 

data is calculated. After that, the noise percentage 

is selected based on the standard deviations' ratio, 

as depicted in (  ). In ( 0) and (  ), σd and σnoise 

are the standard deviation of the measured data 

and added noise, respectively. 

(20) * +    

(21)                  
      
  

     

 

Figure 6 shows the voltage response of the system 

with deliberate noise. These figures show a 

voltage response of the same simulation 

contaminated with 10% (a) and 15% (b) of the 

noise ratio. As the original data has been obtained 

from the system's periodic response, the algorithm 

should calculate LLE to be zero. 
 

 
(a) 

 
(b) 

 
Figure 7. Time response of the voltage with and 

without noise:  

(a) 10% of noise (b) 15% of noise 

 

Figure 7a shows the estimated LLE for the 10% 

noise ratio. The algorithm can efficiently estimate 

LLE to be zero, and thus these amounts of noise 
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do not affect the performance of the chaos 

detection algorithm. However, as shown in figure 

7b, the estimated LLE for the data with a noise 

ratio of 15% is incorrect. The algorithm fails to 

distinguish between the real deterministic chaos 

and the noise. Therefore, the filtration should keep 

the noise ratio under 15% of the primary data in 

order to achieve the correct chaos detection. 
 

 
(a) 

 
(b) 

Figure 8. Estimated LLE for data with 

(a) 10% of noise (b) 15% of noise. 
 

4.3. Comparison with Wolf's algorithm  

In this section, the results of the presented 

algorithm are compared with the classical Wolf's 

algorithm. Table 2 shows this comparison. As 

shown in this table, although the algorithm cannot 

predict LLE as accurate as the Wolf's algorithm, it 

can successfully distinguish the chaotic and 

harmonic behaviors even in the presence of noise. 

The run time of both algorithms is compared in 

this table. These run times are for the simulation 

using a corei7 CPU with a frequency of 2 GHz. 

The proposed algorithm's run time can be 

significantly lower than the Wolf's algorithm 

when the measured data is for a harmonic 

response, even up to 85%. However, the proposed 

algorithm has approximately 50 to 60 percent of 

the Wolf's algorithm's run time for the chaotic 

data. 
 

Table 3. Comparison of the performance of MWM 

with the Wolf's algorithm. 
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5. Conclusion  

In this work, a new simple model based on the 

Euler-Bernoulli beam theory and the Von-Karman 

strain for axially loaded non-linear vibration 

energy harvesters was derived. The model was 

validated by comparing the frequency-load curve 

with the model of Masana and Daqaq [29]. A new 

modification of the Wolf's method [23] and the 

Rosenstein's algorithm [25] was derived. The 

proposed algorithm was used to identify the 

harvester's chaotic and harmonic responses using 

the time-series data of the output voltage 

calculated by the numerical method. Accordingly, 

the algorithm had the merit of using only one 

sensor in the experimental implementation. The 

findings of this work could be summarized as 

follow: 
 

1. The proposed model had excellent predictions 

on the response of the system. 

2. The chaos detection algorithm could 

successfully identify the chaotic and harmonic 

responses. 

3. The algorithm could detect chaos for noisy 

data having up to 10% of noise density. 

4. The algorithm was much faster than the 

primary Wolf's method, and it could be faster 

up to 85% 
 

This work showed that the algorithm could be 

used in the control system of the bi-stable energy 

harvesters. 



M. Mohammadpoura et al./ Renewable Energy Research and Application, Vol 2. No 1, 2021, 71-80 
 

79 

 

6. Acknowledgment  

The authors of this article are grateful to the 

Renewable Energies Engineering Laboratory of 

the Shahid Beheshti University for their support 

and for providing the necessary equipment. 

 

7. References 
[1] G. Rsr, K. Pallikonda, and G. Walunj, "Use of 

Rayleigh Distribution Method for Assessment of Wind 

Energy Output in Cleveland-Ohio," Renew. Energy 

Res. Appl., Vol. 1, No. 1, pp. 11–18, 2020. 
 

[2] M. L. Kamari, H. Isvand, and M. A. Nazari, 

"Applications of Multi-Criteria Decision-Making 

(MCDM) Methods in Renewable Energy 

Development: A Review," Renew. Energy Res. Appl., 

Vol. 1, No. 1, pp. 47–54, 2020. 
 

[3] F. Narita and M. Fox, "A Review on Piezoelectric, 

Magnetostrictive, and Magnetoelectric Materials and 

Device Technologies for Energy Harvesting 

Applications," Adv. Eng. Mater., Vol. 20, No. 5, pp. 1–

22, 2018. 
 

[4] M. F. Daqaq, R. Masana, A. Erturk, and D. Dane 

Quinn, "On the Role of Nonlinearities in Vibratory 

Energy Harvesting: A Critical Review and Discussion," 

Appl. Mech. Rev., Vol. 66, No. 4, p. 040801, 2014. 
 

[5] Y. Jia, "Review of non-linear vibration energy 

harvesting: Duffing, bistability, parametric, stochastic 

and others," J. Intell. Mater. Syst. Struct., vol. 31, No. 

7, pp. 921–944, 2020. 

[6] R. Masana and M. F. Daqaq, "Relative performance 

of a vibratory energy harvester in mono- and bi-stable 

potentials," J. Sound Vib., Vol. 330, No. 24, pp. 6036–

6052, 2011. 

[7] M. Panyam and M. F. Daqaq, "A comparative 

performance analysis of electrically optimized non-

linear energy harvesters," J. Intell. Mater. Syst. Struct., 

Vol. 27, No. 4, pp. 537–548, 2016. 

[8] R. Naseer, A. Abdelkefi, H. Dai, and L. Wang, 

"Characteristics and comparative analysis of mono-

stable and bistable piezomagnetoelastic energy 

harvesters under vortex-induced vibrations," 2018 

AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. 

Conf., No. January pp. 1–9, 2018. 

[9] R. L. Harne and K. W. Wang, "A review of the 

recent research on vibration energy harvesting via 

bistable systems," Smart Mater. Struct., Vol. 22, No. 2, 

p. 023001, 2013. 

[10] Q. He and M. F. Daqaq, "New Insights Into 

Utilizing Bistability for Energy Harvesting Under 

White Noise," J. Vib. Acoust., Vol. 137, No. 2, p. 

021009, 2015. 

[11] C. R. McInnes, D. G. Gorman, and M. P. 

Cartmell, "Enhanced vibrational energy harvesting 

using non-linear stochastic resonance," J. Sound Vib., 

Vol. 318, No. 4–5, pp. 655–662, 2008. 

[12] F. Cottone, H. Vocca, and L. Gammaitoni, 

"Nonlinear Energy Harvesting," Vol. 080601, No. 

February pp. 1–4, 2009. 

[13] B. P. Mann and B. A. Owens, "Investigations of a 

non-linear energy harvester with a bistable potential 

well," J. Sound Vib., Vol. 329, No. 9, pp. 1215–1226, 

2010. 

[14] S. C. Stanton, B. A. M. Owens, and B. P. Mann, 

"Harmonic balance analysis of the bistable 

piezoelectric inertial generator," J. Sound Vib., Vol. 

331, No. 15, pp. 3617–3627, 2012. 

[15] M. Panyam, R. Masana, and M. F. Daqaq, "On 

approximating the effective bandwidth of bi-stable 

energy harvesters," Int. J. Non. Linear. Mech., Vol. 67, 

pp. 153–163, 2014. 

[16] A. Kumar, S. F. Ali, and A. Arockiarajan, 

"Enhanced energy harvesting from non-linear 

oscillators via chaos control," IFAC-PapersOnLine, 

Vol. 49, No. 1, pp. 35–40, 2016. 

[17] B. H. Huynh, T. Tjahjowidodo, Z.-W. Zhong, Y. 

Wang, and N. Srikanth, "Design and experiment of 

controlled bistable vortex-induced vibration energy 

harvesting systems operating in chaotic regions," 

Mech. Syst. Signal Process., Vol. 98, pp. 1097–1115, 

2018. 

[18] A. Yousefpour, A. Haji Hosseinloo, M. Reza Hairi 

Yazdi, and A. Bahrami, "Disturbance observer–based 

terminal sliding mode control for the effective 

performance of a non-linear vibration energy 

harvester," J. Intell. Mater. Syst. Struct., Vol. 31, No. 

12, pp. 1495–1510, 2020. 

[19] E. Ott, C. Grebogi, and J. A. Yorke, "Controlling 

chaos," Phys. Rev. Lett., Vol. 64, No. 11, pp. 1196–

1199, 1990. 

[20] H. G. Schuster, U. Parlitz, and L. Kocarev, 

Handbook of Chaos Control. Wiley-VCH Verlag 

GmbH & Co.KGaA, 2008. 

[21] A. Haji Hosseinloo, J.-J. Slotine, and K. Turitsyn, 

"Robust and adaptive control of coexisting attractors in 

non-linear vibratory energy harvesters," J. Vib. 

Control, No. November 2016, p. 107754631668899, 

2017. 

[22] P. Harris, C. R. Bowen, H. A. Kim, and G. Litak, 

"Dynamics of a vibrational energy harvester with a 

bistable beam: Voltage response identification by 

multiscale entropy and '0-1' test," Eur. Phys. J. Plus, 

Vol. 131, No. 4, 2016. 

[23] A. Wolf, "Estimating the dominant Lyapunov 

exponent from a Time Series Documentation for the 

efficient version of the algorithm of Wolf et al.," pp. 1–

25, 1985. 

[24] S. Kodba, M. Perc, and M. Marshall, "Detecting 

chaos from a time series," Eur. J. Phys., Vol. 26, No. 1, 

pp. 205–215, 2005. 

[25] Michael T. Rosenstein James J. Collins, C. J. De 

Luca, M. T. Rosenstein, J. J. Collins, and C. J. De 

Luca, "A practical method for calculating largest 



M. Mohammadpoura et al./ Renewable Energy Research and Application, Vol 2. No 1, 2021, 71-80 
 

80 

 

Lyapunov exponents from small data sets," Phys. D 

Nonlinear Phenom., Vol. 65, No. 1–2, pp. 117–134, 

1993. 

[26] S. Zhou, X. Wang, Z. Wang, and C. Zhang, "A 

novel method based on the pseudo-orbits to calculate 

the largest Lyapunov exponent from chaotic 

equations," chaos, Vol. 29, No. 3, 2019. 

[27] S. Zhou and X. Wang, "Simple estimation method 

for the largest Lyapunov exponent of continuous 

fractional-order differential equations," Phys. A Stat. 

Mech. its Appl., Vol. 563, p. 125478, 2021. 

[28] S. Mehdizadeh, "A robust method to estimate the 

largest Lyapunov exponent of noisy signals: A revision 

to the Rosenstein's algorithm," J. Biomech., Vol. 85, 

pp. 84–91, 2019. 

[29] R. Masana and M. F. Daqaq, "Electro-mechanical 

Modeling and non-linear analysis of axially loaded 

energy harvesters," J. Vib. Acoust. Trans. ASME, Vol. 

133, No. 1, 2011. 

[30] M. Mohammadpour, M. Dardel, and M. H. 

Ghasemi, "Non-linear energy harvesting through a 

multimodal electro-mechanical system," J. Theor. 

Appl. Vib. Acoust. - TAVA, Vol. 1, No. 2, pp. 73–84, 

2015. 

[31] S. S. Rao, Vibration of Continuous Systems 

(2007). 2007. 

[32] L. NOAKES, "the Takens Embedding Theorem," 

Int. J. Bifurc. Chaos, Vol. 01, No. 04, pp. 867–872, 

1991. 

 

 


