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Abstract 

An optimal arrangement of turbines in wind farms is very important in order to achieve maximum energy at 

the lowest cost. In the present work, the use of Vestas V-47 wind turbine and uniform one-way wind in 

achieving the optimal arrangement of horizontal axis turbines in Manjil using the genetic and Monte Carlo 

algorithms is investigated. The Jensen model is used to simulate the wake effect on the downstream turbines. 

The objective function is considered as the ratio of cost to power of the power plant. The results obtained 

show that the Monte Carlo method compared to the genetic algorithm will give a better result. Under the 

same conditions, the Monte Carlo algorithm will give 29% and 40% better results in terms of the number of 

turbines and output power, respectively. In terms of optimization, in the Monte Carlo algorithm, its fitness 

value is 16% less than the genetic algorithm, which indicates its better optimization. 

Keywords: Wind Turbine, Optimization, Monte Carlo Method, Genetic Algorithm, Farm Layout. 

1. Introduction

The global energy crisis has put the wind energy 

at the focus of attention as a clean and unlimited 

energy source for the future. The first attempts 

regarding the use of wind energy dates back to the 

industrial revolution era when the wind turbines 

(WTs) were first used as a means of energy 

harvesting to generate electricity. WTs are the 

devices widely used in the agricultural and 

commercial sectors to derive energy from the free 

stream wind near the ground, and within a 

planetary boundary layer. The wind flow 

characteristics are remarkably affected by the 

energy extraction process due to retarding the 

wind speed at downstream. A cluster of windmills 

installed together on the ground are called a 

windfarm that perform the electricity extraction 

efficiently compared to the fossil fuel power 

stations [1, 2]. The local wind features are 

benchmarks for a site to be selected as a 

windfarm. Equally importantly, land geology and 

accessibility, and environmental concerns are the 

other key factors. The energy produced by a 

turbine placed in the downstream of another 

turbine will deteriorate as a result of energy deficit 

caused by the upstream turbine [3, 4]. A 

momentum deficit occurs behind a turbine, and 

the flow velocity will be lower compared to the 

upstream values. Thus the performance of 

windfarm turbines that are placed in the 

downstream sections of wakes with lower energy 

will be reduced considerably [5]. At a distance far 

enough from behind the turbine, the wind speed 

will have returned to its free stream value. It is 

very important to understand such power 

degradation characteristics and take them into 

account when designing the turbine placement and 

WF layout. Obviously, the WF concept will be 

reasonable and cost-effective on the condition that 

all factors are considered. Consequently, 

clustering WTs in a certain number of locations 

will give the highest wind energy potential. Since 

different factors play a role in forming the wake 

flow behind a turbine array, wake size prediction, 

defining the location and velocity of each turbine, 

and modeling the interactions between multiple 

turbines wakes is a sophisticated problem in fluid 

dynamics, which can be well-handled using 

computer simulations. It is noteworthy that 

accurate modeling of atmospheric interactions is 

almost impossible and approximation methods are 

widely used to tackle the problem [6–10]. In the 

recent years, attempts have been made for the 
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selection of suitable wake models and simulation 

approaches. As far as the classical mechanics is 

concerned, the accurate analysis and prediction of 

fluctuations to the wind flow as the flow 

encounters an obstacle is very complicated. The 

most fundamental difficulty associated with this 

problem is the modeling of atmospheric 

turbulence. In addition, complex boundary 

conditions regarding the WT wake makes the 

problem more complex. The main feature of WT 

blade rotating motion is the adverse pressure 

gradients, which can result in a severe alteration 

of the downstream flow pattern as well as upwind 

of the pertinent WT. Obviously, a reasonable and 

efficient windfarm design, cannot be achieved 

without using both the experimental and analytical 

techniques. The main focus of this paper is to 

present an optimal solution to the problem of 

windfarm design, based on Jensen wake model, 

employing GA and MCm. The main objective of 

the WF wake study is to formulate the interactions 

among a number of large WTs all together form 

an extended array or "WF" [11, 12].  

A specific consideration must be given to defining 

the amount of power output reduction that down 

WTs suffer as a result of energy extraction by the 

upwind units, in case when several WTs are 

aligned with the wind. The most important 

parameter is the distance between the units. The 

Manjil site is a rectangular with an inter-unit 

spacing of 2500*2500 m2. It is expected that the 

overall power reduction due to the loss of 

wakefulness can be obtained for each given wind 

speed as a function of unit distance. Thus a 

developed technique for performing a cluster 

function is required to specify the interaction 

between the units. A new technique in this 

research work for estimating the power of a 

windfarm design is presented, which seems to 

solve the problems presented by the reduced-order 

awakening modeling. Obviously, the power 

reduction is significant, and strongly depends on 

the wind direction. When planning the WT 

clusters, this power reduction should be 

considered so that the annual estimates for 

different cluster configurations at a particular site 

can be estimated. When calculating the power 

reduction for a cluster, several factors must be 

considered. The power of WTs to generate 

electricity is evident in technology; especially 

where there are many wind resources, the wind 

power converters are more economically 

competitive than the other conventional power 

generation units are. However, in the case of large 

multi-megawatt power plants, a large number of 

WTs must be used, and the overall efficiency of 

the windfarm will be greatly affected by their 

placement. The present work offers a new 

approach to the problem of WT placement. The 

adopted method is based on the principles of 

evolutionary calculations and random sampling. 

The main feature of the genetic optimization 

procedure is the independency of the local 

optimization or gradients. 

On the other hand, the Monte Carlo method 

(MCm) provides us with the feature of random 

sampling, which means that traversing the 

solution space in each step of the algorithm 

randomly and comparing the solution with the 

previous best candidate. The effect of WTs on 

each other and wind variations are two important 

factors that must be considered in order to achieve 

the maximum power for the minimum installation 

cost. 

The problem constraints like the WF size, wind 

distribution, and WT specification must be 

defined correctly to be able to simulate the energy 

decrease pattern for a reasonable number of 

possible configurations in order to evaluate 

whether it is the optimum solution. 

In order to solve this problem, two separate 

algorithms are proposed, one for evaluating the 

performance of the windfarm, and the other for 

the optimization procedure. The wind wake is 

simulated using the Jensen model, while the 

optimization technique using GA and MCm. For 

an extensive utilization of the wind energy, WTs 

are placed in special arrangements in windmills. 

There are limited areas with wind resources to 

place WTs together in clusters or WFs. WTs often 

intervene with each other on windfarms. The 

Downstream flow behind the turbine has a low 

velocity, a strong wind shear, and usually an 

intense turbulence. Hence another WT located 

along the wind direction behind the first turbine is 

probably to generate less energy than the 

undisturbed one by a value that is decreased with 

increasing distance. The wind shear and 

turbulence are known to be the two causes of 

dynamic loads in WTs. Consequently, with this 

concept, an accurate discription of the flow behind 

WTs is required to study WFs. The flow 

characteristics behind several WTs have been 

extensively studied over the past two decades. The 

initial case report is by Templin [12]. 

The theoretical model presented in this report 

discusses the effect of an infinite WF in terms of 

its integrated roughness effect on the flow. The 

analysis of jets used in the disturbance region and 

reported [13] is a single WT wake model. The 

mentioned model was initially experimented on a 

large-scale data in Sweden [14]. The wind tunnel 
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modelling was also considered at the Netherlands 

Organization for Applied Scientific Research and 

at the Swedish National Aeronautical Research 

Institute [15–17]. The experimental data presented 

by Vermeulen and many reforms provided to the 

Lissaman model, which is now recognized as 

MILLY [18]. In the UK, different evaluations 

were run in a wind tunnel [19]. Regarding the 

single-wake in WTs, several research works were 

performed [20-25]. The point of view in the past 

research works focuses on the velocity deficiency 

but the recent studies mostly concentrate on the 

turbulence parameters. Many Danish researchers 

accomplished investigations of WFs. Initially, the 

wind and turbulence region near the two Nibe 

turbines were completely studied [20–23], and 

then the two large WFs Tændpibe [24] and 

Norrekaer Enge [20, 25] were investigated. In 

Netherland, a study of WF including 18.3 MW 

WTs has proposed many results of the flow 

structure in a WT cluster [26–28]. Since 1990, the 

results obtained have been derived at the Swedish 

Alsvik WF [29]. In the recent research works, 

Swedish Alsvik data have also been excavated. 

The mentioned studies can all be considered for 

the flat site locations but several research works 

have been performed for various topological areas 

such as USA WFs [30, 31] and Greek WFs [20]. 

Based on the information mentioned above, in 

addition to the referenced model [18] and other 

models that are influenced by [13], e.g. the Riso 

model [38], many models of the k-Ɛ have been 

improved [32–35]. The WF layout design is a 

multi-disciplinary problem. Two major 

parameters, namely the anticipated power output 

and the wake influence, must be considered. The 

maximum power output can be achieved by 

minimizing the wake effect. Two important 

features of the wake modeling are the decline in 

the wind speed and increase in the level of 

disturbance of wind. Reference [36] solved WF 

optimizing the number and position of WTs using 

GA. They assumed a rectangular area consisting 

of 100 possible places for turbine locations using 

the Jensen’s wake model in order to analyze the 

wake effect under various wind speeds and 

directions. The improved results were achieved 

with a better GA in [37]. A research work in 

reference [45] followed the model that was 

indicated in [44] using MCm. The WF cost 

analysis based on the turbine rotor diameters and 

the turbine numbers was done by Chowdhury et 

al. [38] using the constrained Particle Swarm 

Optimization (PSO). Nested GA for WF with 

different hub height WTs was used by Chen et al. 

[39], resulting in a slightly more optimal design 

compared to the case with identical hub WTs. 

Different cost models and hub height WTs were 

the main features of this work. Some researchers 

used the mathematical programming approaches. 

For example, Donovan [40] proposed the multiple 

mixed-integer linear models based on the vertex 

packing problem between a couple of WTs. In 

another paper, a new mathematical approach to 

optimize the layout of a 10 * 10 grid of a possible 

turbine location in a WF was developed by Turner 

et al. [41], introducing the interaction matrices to 

model the wake effect between the turbines. The 

quadratic integer programming as well as the 

mixed-integer linear programming approaches 

were used. The computational fluid dynamics is 

not an efficient tool to calculate the velocity 

deficit due to the computational difficulties. The 

analytic and quasi-experimental wake models 

have been developed over the past decade. The 

velocity deficit modeled by these models 

generally correspond to the computational fluid 

dynamics simulations and wind tunnel 

measurements. In this regard, changing wind 

robustness quantification and layout optimization 

was considered by Feng et. al. [42]. Mike studied 

the WF multi-objective wake redirection for 

optimizing power production and loads [43]. The 

Gaussian-based wake model was another 

approach taken into account by Parade et al. [44]. 

Mirhassani et al. and Vasel-be-hagh et al. 

considered uncertainty and hub height in their 

optimization studies, respectively [45, 46]. 

2. Methodology

In this research work, the comparison of MCm 

simulation and GA in optimal WF layout design 

in the Manjil site is based on the Jensen model. A 

GA method is used in conjunction with MCm in 

order to obtain a favorable and optimized 

placement for Vestas V-47 WTs for maximum 

power output, while decreasing the number of 

WTs in WFs and the land acreage under 

cultivation of each WF. All the input data for the 

simulation is provided in Table 1. 

Table 1. Input data for simulation. 

Blade overall length in Vestas V-47 22.9 m 

Rotor diameter in Vestas V-47 47 m 

Hub height in Vestas V-47 40 m 

Roughness in Manjil site 0.3 

Manjil WF dimension 2000 × 2000 𝑚2 

Thrust coefficient 0.88 

2.1 Jensen model 

Jensen provided an efficient and suitable model 

for the turbine wake effect simulation, considering 

a negative jet. Based on the Jensen model, the 

rotational vortices are neglected near the blade. 
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The momentum deficit behind the turbines is 

idealized with a linear model. As a result, the 

turbines must be positioned far enough from each 

other both row wise and column wise. It is 

assumed that the wake radius is proportional to 

the distance downward the turbine. Thus from the 

momentum balance, equation (1) holds. 

𝛑𝐫𝟎
𝟐𝐮 + 𝛑(𝐫𝟐 + 𝐫𝟎

𝟐)𝛎𝟎 = 𝛑𝐫
𝟐𝛎𝟏 (1) 

Solving the above equation for 𝜈1 and considering

the Betz theory for a flow speed behind the rotor, 

relation (2) holds. 

𝛎𝟏 = 𝛎𝟎 (𝟏 −
𝟐

𝟑
(

𝐫𝟎
𝐫𝟎 + 𝛂𝐱

)) (2) 

A conical shape approximates assuming linear 

expansion in the turbine wake, the profile of the 

flow passage. The conic radius is calculated by 

relation (3). 

𝐫 = 𝐫𝟎 + 𝛂𝐱 (3) 

In regular conditions, 𝛼 can be approximated by 

0.1. Having used this assumption, one can 

compare the value of 𝑟 to that of the experimental 

results considering suitable values for 𝑟0 and 𝛼.

Based on the above discussion, relation (4) is 

considered for the wake velocity. 

𝐮𝐢𝐣 = 𝐮𝟎 {𝟏 −
𝟐𝐚

𝟏 + 𝛂(
𝐱𝐢𝐣
𝐑
)
𝟐
} (4) 

Where, 𝛼 is initially derived by Frandsenin is 

shown in equation (5). 

𝛂 =
𝟎. 𝟓

𝐋𝐧 (
𝐳
𝐳𝟎
)

(5) 

In the above equation, 𝑎 is derived from the 

turbine thrust coefficient in relation (6), which 

should be less than 0.5. 

𝐂𝐓 = 𝟒𝐚(𝟏 − 𝐚) (6) 

The wake radius exactly behind the turbine is 

equal to the turbine diameter. The wake radius 

downstream can be defined in terms of the axial 

induction factor and turbine diameter in equation 

(7). 

𝐫𝐝 = 𝐫𝟎√
𝟏 − 𝐚

𝟏 − 𝟐𝐚
(7) 

The wake model is described in figure 1. 

The model proposed by Katic can estimate the 

wake effect for various conditions with an 

acceptable accuracy compared to the experiments. 

The model is based on the flow kinetic energy that 

means the final kinetic energy loss is equal to the 

sum of the energy losses of all turbines, and is 

used in order to predict the flow velocity 

downstream of n turbines by equation (8). 

Figure 1. Jensen wake model.

(𝟏 −
𝐔

𝐔𝟎
)
𝟐

=∑(𝟏 −
𝐔𝐢
𝐔𝟎
)
𝟐𝐧

𝐢=𝟏

(8) 

Figure 2 depicts the wake velocity in terms of the 

distance between two consecutive turbines. 

Figure 2. Wake velocity in terms of distance between two 

consecutive turbines. 

As it can be seen, at a distance of about 50 times 

the turbine blade diameter, the wake flow velocity 

reaches the free stream wind velocity, which is 

not optimal. 

2.2 Wake effects on turbine  

Figure 3 displays the wake effect on the 

downstream turbines. 

Figure 3. Wake effect on downstream turbines. 
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The shadowed region 𝐴𝑊 is the partial area of the

blade rotational plane in the downstream turbine, 

which is influenced by the upstream turbine wake. 

𝐴𝑊 can be calculated by equation (9).

{

𝐀𝐖 = 𝐑𝐖
𝟐 (𝛉𝐖 −

𝐬𝐢𝐧(𝟐𝛉𝐖)

𝟐
) + 𝐫𝐓

𝟐 (𝛉𝐓 −
𝐬𝐢𝐧(𝟐𝛉𝐓)

𝟐
) ; ∀ 𝐗 ∈ [𝐑𝐖 − 𝐫𝐓, 𝐑𝐖 + 𝐫𝐓]

𝐀𝐖 = 𝟎 ;∀ 𝐗 ≥ 𝐑𝐖 + 𝐫𝐓
𝐀𝐖 = 𝐀𝐓 ; ∀ 𝐗 ≤ 𝐑𝐖 − 𝐫𝐓 (9) 

𝛉𝐖 = 𝐜𝐨𝐬−𝟏 (
𝐑𝐖
𝟐 + 𝐗𝟐 − 𝐫𝐓

𝟐

𝟐𝐗𝐑𝐖
)   ;   𝛉𝐓 =𝐜𝐨𝐬

−𝟏 (
𝐑𝐖
𝟐 − 𝐗𝟐 − 𝐫𝐓

𝟐

𝟐𝐗𝐫𝐓
)   ;   𝐗 = 𝐝𝟏 + 𝐝𝟐

The turbine velocity affected by the partial wake 

is defined by equation (10). 

(𝟏 −
�̄�𝐢
𝐮𝟎
)
𝟐

=
𝐀𝐖
𝐀𝐓

(𝟏 −
𝐮𝐢𝐣

𝐮𝟎
)
𝟐

(10) 

The following three conditions are considered: 

 The downstream turbine is completely

affected by the upstream turbine wake, the

consition under which the 
𝐴𝑊

𝐴𝑇
 parameter is

equal to 1.

 The downstream turbine is partially affected

by the upstream turbine wake, the consition

under which the 
𝐴𝑊

𝐴𝑇
 parameter is in the range 

of 0 to 1. 

 The downstream turbine is outside the

upstream turbine wake, the consition under

which the 
𝐴𝑊

𝐴𝑇
 parameter is equal to 0. 

The wake effect of an upstream turbine on the 

downstream units is depicted in figure 4. 

Table 2. Different wake effect conditions and pertinent formulas. 

Wake shape effect Velocity decay formula 
Case 1: Complete wake

𝐮𝐢 = 𝐮𝟏𝐢 = 𝐮𝟎 [𝟏 − (
𝟐𝐚

[𝟏 + 𝛂(𝐱𝐢𝐣/𝐫𝐢)]
𝟐)] 

CASE 2: PARTIAL WAKE 

(𝟏 −
�̄�𝐢
𝐮𝟎
)
𝟐

=
𝐀𝐖
𝐀𝐓

(𝟏 −
𝐮𝟏𝐢
𝐮𝟎
)
𝟐

CASE 3: MULTIPLE TURBINE WAKE 

(𝟏 −
�̄�𝐢
𝐮𝟎
)
𝟐

= (𝟏 −
𝐮𝟏𝐢
𝐮𝟎
)
𝟐

+ (𝟏 −
𝐮𝟐𝐢
𝐮𝟎
)
𝟐

CASE 4: PARTIAL WAKE 

(𝟏 −
�̄�𝐢
𝐮𝟎
)
𝟐

=
𝐀𝐖𝟏
𝐀𝐓

(𝟏 −
𝐮𝟏𝐢
𝐮𝟎
)
𝟐

+
𝐀𝐖𝟐
𝐀𝐓

(𝟏 −
𝐮𝟐𝐢
𝐮𝟎
)
𝟐

CASE 5: PARTIAL WAKE 

(𝟏 −
�̄�𝐢
𝐮𝟎
)
𝟐

=
𝐀𝐖𝟏
𝐀𝐓

(𝟏 −
𝐮𝟏𝐢
𝐮𝟎
)
𝟐

+ (𝟏 −
𝐀𝐖𝟏
𝐀𝐓

)(𝟏 −
𝐮𝟐𝐢
𝐮𝟎
)
𝟐
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Figure 4. Effect of upstream turbine on downstream 

units. 

2.3 Optimization 

In this section, the arrangement of the horizontal 

axis wind turbines in the wind farm will be 

optimized. For this purpose, first, the genetic 

algorithm (GA) and Monte Carlo method (MCm) 

are explained, and then the objective function 

used in this research work will be defined. 

2.3.1. MCm 

Two main methods can be utilized in order to 

analyze the large dimensional systems [55] such 

as the one in this case. First, the WF equipment 

location is defined for an analytical solution. In 

this way, important location conditions are 

considered to WF design criteria. Then MCm is 

used for a statistical study. MCm covers all the 

location conditions completely, with which the 

WT installation could be optimized. By random 

generator sampling, MCm calculates the results 

[56]. When the exact result is impossible to 

calculate, MCm can be used. When the physical 

phenomenon in WF is mathematically modeled 

and has uncertain parameters, this method is 

suitable for modeling this system, which has a 

high degree of freedom. In the MCm, the results 

are considered as parameters of a hypothetical 

community, an example of which can be 

constructed using a random numerical sequence 

from which a statistical estimation of the 

parameter can be obtained [57]. A flowchart of 

the Mcm used in this work is shown in figure 5. 

Figure 5. MCm flowchart. 

2.3.2. GA 

GA in MATLAB is utilized in order to optimize 

the WTs location conditions in a WF. Primarily, 

GA randomly generates the binary chromosome 

strands. Each chromosome strand is an individual, 

which indicates the locations of WTs in WF. 

Selection, cross-over and mutation are the other 

three important stages in GA. After three main 

stages, the individuals with better results are 

passed on to the next generation, and the rest are 

eliminated at the same time. GA then replaces the 

deleted items with some new random ones in 

order to keep the same number of individuals in 

each generation. GA will continue uninterruptedly 

until it reaches the maximum number of 

production given. The recent studies [43, 44, 58, 

59], have used WTs with a height of single hub, 

and they only had to consider the position of each 

WT in the desired WF so that a binary string in 

GA is enough to indicate the layout of a WF. A 

flowchart of the GA used in this work is shown in 

figure 6. 

Figure 6. GA flowchart. 

2.3.3 Objective function 

In order to define the objective function, a regular 

cost model is considered for the WF, which has 

been used in many research works. The cost 

function is dependent on the number of turbines 

installed in the WF. This non-dimensional 

function gives the cost involved in preparing and 

developing the WF. As it is suggested in the 

literature, the overall investment can be reduced 

by half. 

The overall cost is defined by relation (11). 

𝐂𝐨𝐬𝐭 = 𝐍𝐭 (
𝟐

𝟑
+
𝟏

𝟑
𝐞−𝟎.𝟎𝟎𝟏𝟕𝟒𝐍𝐭

𝟐
) (11) 

Figure 7 depicts the cost function in terms of the 

number of turbines, and figure 8 shows the 

derivative of the cost function in terms of the 

number of turbines. 

It is noticeable from the above figure that the 

function minimum is placed between the number 
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of turbines 29 and 30. After reaching the 

minimum, the derivative follows a rising trend, 

which means for a turbine number greater than 30; 

the cost of N+1 turbine is more than N turbine. 

Thus a further increase in the turbine number 

would not be efficient. Since only the WF cost 

was considered, this result only holds with respect 

to the cost specifications. 

Figure 7. Cost function vs. number of turbines. 

Figure 8. Cost function 1st derivative vs. number of 

turbines. 

Relation (12) holds for the WF available power 

production. 

𝐀𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞 𝐩𝐨𝐰𝐞𝐫 =
𝟏

𝟐
𝛒𝐀𝐮𝐭

𝟑 (12) 

The blade rotational plane area is equal to R2
b. 

The above relation is for an ideal condition, and 

an efficiency factor must be multiplied where it is 

shown in equation (13). 

𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐝 𝐩𝐨𝐰𝐞𝐫 = 𝛈
𝟏

𝟐
𝛒𝐀𝐮𝐭

𝟑 (13) 

𝜂 is typically equal to 0.4, and the standard air 

density is 1.2. Therefore, Equation (13) becomes 

equation (14). 

𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐝 𝐩𝐨𝐰𝐞𝐫 = 𝟎. 𝟐𝟒𝐀𝐮𝐭
𝟑 (14) 

During the calculation process, the number of 

turbines by which the downstream turbine is 

influenced should be checked. The partial 

condition of the wake should also be considered. 

The higher the number of upstream turbines, the 

greater the wake loss will be. 

The final objective function is formulated as 

equation (15). 

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 =
𝐍𝐭 (

𝟐
𝟑
+
𝟏
𝟑
𝐞−𝟎.𝟎𝟎𝟏𝟕𝟒𝐍𝐭

𝟐
)

𝟎. 𝟐𝟒𝐀∑ 𝐮𝐢
𝟑𝐍𝐭

𝐢=𝟏

(15) 

The numerator is the investment cost, and the 

denominator is the production power of the WF, 

which is dependent on the turbine placement, and 

must be calculated for each turbine based on their 

positions. 

3. Result and discussion

In this work, the Vestas V47 horizontal WT was 

arranged in a WF on a square ground sub-divided 

into 100 (10m*10m) turbine locations so the 

turbines will be 5D apart. In the GA, 600 

individuals initially gather in more than 20 sub-

populations, and evolve into more than 9,000 

generations. Since the wind velocity in our studied 

wind field varies between 10 and 15 m/s, the 

results for different wind velocities (10, 12, and 

15 m/s) are provided (Figure 9). 

Wind speed of 10 m/s 

Wind speed of 12 m/s 

Wind speed of 15 m/s 

Figure 9. GA results for different wind speeds. 

0

10

20

30

0 5 10 15 20 25 30 35 40 45 50

C
o

st
 (

N
t)

Number of Turbines, Nt

0/5

0/6

0/7

0/8

0/9

1

0 5 10 15 20 25 30 35 40 45 50

C
o

st
'
(N

t)

Number of turbines, Nt



M. A. Javadi et al. / Renewable Energy Research and Applications, Vol. 2, No. 2, 2021, 205-215

218 

In the case of MCm 600 individuals spreading 

over 20 sub-populations evolve for 5000 

generations. Since the wind velocity in our studied 

wind field varies between 10 and 15 m/s, the 

results for different wind velocities (10, 12, and 

15 m/s) are provided (Figure 10). 

Figure 10. MCm results for different wind speeds. 

A comparison between the presented results and 

the previous works is provided in table 3 and 

figure 11.  

a 

b 

c 

d 

Figure 11. Display of the result of four studies (a) Our 

results (2021). (b) Grady et al.’s (2005) [44]. (c) Marmidis 

et al.’s (2008) [45]. (d) Mossetti et al. (1994) [43]. 
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Table 3. Results for wind farm layout. 

Number of 

turbines 

Total power 

(KW/year) 

Fitness 

value 

Present paper-GA 28 13127 0.001604 

Present paper-MC 36 18387 0.001374 

Marmidis 32 16395 0.0014107 

Grady 30 14310 0.0015436 

Mosetti 26 12352 0.0016197 

Table 4 shows the proposed optimization results 

of the presented work and the other three studies 

as the number of turbines, the power output, and 

the fitness value. The first two rows show the 

results obtained in the presented work. Although 

the GA result is not better than the previous work, 

the MCm result is better than all cases, as our total 

power output is 18.387 MW/year compared to the 

12.352 MW/year in Ref. [43], 16.395 MW/year in 

Ref. [45], and 14.310 MW/year in Ref. [44]. The 

critical factor compared to the other studies is the 

fitness value that will specify whether the result of 

this optimization is optimal or not. The fitness 

value is defined as the ratio between the cost and 

the power output. The fitness value is the critical 

factor as equation (16), which specifies whether 

this optimization is optimal or not, in comparison 

with the other studies. 

𝐅𝐢𝐭𝐧𝐞𝐬𝐬 𝐯𝐚𝐥𝐮𝐞 =  
𝐂𝐨𝐬𝐭

𝐏𝐭𝐨𝐭𝐚𝐥
(16) 

In which the cost is defined by equation (11). 

Mosetti et al. reached a 0.0016197 fitness value, 

Grady et al. 0.0015436, and Marmidis 0.0014107. 

The fitness value of the present work, which is as 

smallest as 0.001374, demonstrates that the results 

of the present work are more favorable and 

optimal. Conclusively, we not only reached the 

greatest number of turbines and the greatest total 

power, we also obtained greater prices of the 

fitness value.  The presented placements of all the 

discussed studies are shown in figure 11. 

4. Conclusions

In this work, the limitations of WT installation 

and conventional optimization methods for 

achieving an optimal WF were investigated. The 

background of this work was thoroughly 

investigated. In order to validate the developed 

codes, three studies in this field were compared 

with the present results. Finally, optimization was 

performed for the defined function using both GA 

and the MCm algorithm. 

The results obtained show that MCm provides a 

better optimization result since we reached a 

greater number of turbines, a greater total power, 

and even a lower of fitness value. Under the same 

conditions, the Monte Carlo algorithm gave 29% 

and 40% better results in terms of the number of 

turbines and the output power, respectively. In 

terms of optimization, in the Monte Carlo 

algorithm, its fitness value was 16% less than the 

genetic algorithm, which indicates its better 

optimization. 

This work can be considered as a single type of 

turbines but it can be applicable if different types 

of turbines are available. The first population of 

the present work is completely random, and may 

achieve a better result in less time if the first 

generation is developed appropriately. 
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