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Abstract 

Global warming, environmental pollution, decreasing fossil fuels, increasing demand, and prices of energy 

carriers within the social and political conflicts between different nations are some of the problems for the 

traditional energy production and economic dispatch. In the traditional generation systems, about 25% of 

energy is wasted, and the presence of Distributed Energy Resources (DERs) such as Photovoltaic (PV), 

Wind Turbine (WT) and wind farms, Fuel Cell (FC), and Combined Heat and Power (CHP) can reduce fuel 

consumption, pollution, transmission losses, and increase in the micro-grid productivity. In this paper, a 

complete energy management framework in a micro-grid is proposed by considering the load distribution 

constraints using the Improved Shuffled Frog Leaping Algorithm (ISFLA) algorithm, in which it determines 

the exact share of energy production or consumption for different units. The proposed scheme is used to 

select the best arrangement of DERs in the power grid, by which the output is to determine the number and 

optimal location of DERs in the several bus-bars of the grid. Then the Independent System Operator (ISO) 

determines the quantity of energy exchange and consumption by considering the load distribution 

constraints. Boilers and CHPs are also used to maintain the balance between the production of thermal power 

by the energy sources and thermal demands. In addition, the Demand Response Program (DRP) is used with 

the aim of smoothing the load curve and reducing the operating costs. Finally, the proposed method is 

implemented and simulated on the IEEE 69 and 118 bus systems using the MATLAB software, which 

compares the output results with the existing algorithms, showing the superiority of the proposed method. 

 

Keywords: Demand Response, Energy Market, Optimization, Distributed Energy Resources, Improved 

Shuffled Frog Leaping Algorithm. 

1. Introduction 

In the optimal planning and operation of micro-

grids (MGs), there should be at least one 

applicable program for power generation 

management in the demand side and the available 

considered Distributed Energy Resources (DERs). 

According to [1], due to the increase in the 

greenhouse gas emissions and the concerns about 

the health of the global community and 

environmental pollution, the tendency to use 

renewable energies is growing. In [2], an 

applicable approach due to power consumption 

and MG energy management optimization has 

been investigated, which includes Demand 

Response Program (DRP) implementation for an 

MG operation in the grid-connected mode. The 

effect of using DRP in the daily MG production 

planning along with flattening the power profile 

and preventing the blackouts and postponing 

investment in the network in the island operation 

has been investigated [3]. The optimal 

implementations of economic programs to 

manage the DER productions in the grid-

connected mode with the ability to exchange the 

power have been studied in [4]. In order to 

maximize the profits in the MG operation and 

increase the social welfare by considering the 

thermal loads, energy storage sources (ESSs) and 

the main network along with flattening the 

demand curve in a competitive market, some 

applicable DRPs have been utilized in [5, 6]. A 

two-stage stochastic programing has been used for 

DERs to participate in supplying the load by 

considering DRPs as a reserve [7]. In this study, 

in critical moments such as the transmission line 

outage, due to the generated reduced power, DRP 

has been applied to the participants as a piece-
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wise linear program and mandatory shedding. The 

authors have used the mixed integer programming 

(MIP) method for DER planning, in which the 

producers and consumers can offer their biddings 

in five different blocks, which will increase the 

consumer profits and is able to reduce the market 

power [8]. 

According to the guidelines of the regional power 

companies, reducing the loads during peak 

intervals results in reducing the cost of economic 

load dispatch (ELD), and prevents high prices. 

Correspondingly, the hourly consumption pattern 

variations lead to a significant reduction in the 

local marginal price (LMP). In addition, DRP can 

smoothen the load profile curve, and either helps 

to reduce the operating costs or reduce the 

detrimental effects of carbon dioxide emissions. 

The security constraint unit commitment (SCUC) 

is a superior way to overcome ELD and reduction 

of the operating costs because SCUC contributes 

significantly to the flexibility and efficiency of the 

electricity market. Implementing DRP in the 

network has been modeled by the real-time 

pricing program in the presence of electricity 

price uncertainty, which has been conducted out 

through robust scheduling [9]. The operation 

planning has then been modeled along with the 

network security constraints with the impact of 

risk in the presence of WT [10]. In [11], the model 

proposed in [9] has been presented and solved by 

linearization that has been easily implemented. 

The concept of price dependence approach has 

been considered in many literatures including 

[12]. The elasticity and flexibility of the load 

concerning price can be defined in the ratio of the 

relative changes in load to the close modifications 

in price. In [13], the intermittent DRP has been 

studied as one of the most essential and common 

DRPs to minimize the costs. Price elasticity in 

[14] has been divided into two types of self and 

mutual groups. Self-elasticity is related to the 

loads that cannot be moved from one hour to the 

next such as light loads, in which case the value of 

this coefficient of elasticity is always negative. 

The coefficients of mutual elasticity, in turn, take 

positive values, and are attributed to the loads that 

can be delayed [15]. In [16], a comprehensive 

model has been presented, in which the 

dependence of load on the price has been shown 

through four functions: linear, potential, 

exponential, and logarithmic approaches. Then by 

acquiescing the weight coefficients to each one of 

the four functions mentioned, a comprehensive 

model of all these functions has been obtained. 

This paper noted that the most appropriate 

solution for the load functions was obtained by 

considering the price in the linear elasticity model. 

The Shuffled Frog Leaping Algorithm (SFLA) has 

recently been widely used in order to optimize 

energy consumption in MGs. The SFLA 

algorithm is based on a strategy related to meta-

heuristic memetics [17]. The memetic algorithm is 

a population-based one used for difficult and 

significant optimization problems. The main idea 

of this algorithm is to apply a local search method 

within the structure of the genetic algorithm to 

improve the performance of the search 

intensification process. The memetic algorithm 

first encrypts the set of initial answers and then 

the algorithm calculates the suitability of each 

solution based on a fitness function and generates 

new responses [18]. The SFLA algorithm is 

inspired by how frogs search for food. The SFLA 

algorithm uses a combination strategy, and allows 

the exchange of messages in a local search. This 

algorithm combines the advantages of the 

anemometric algorithm and the particle group 

optimization. In the SFLA algorithm, the 

messages are exchanged not only in a local search 

but also in a global search. Thus the local and 

international searches are well-combined in this 

algorithm. SFLA is a high potential for the global 

search algorithms, and implements them 

efficiently. The SFLA algorithm can solve many 

non-linear, undetectable, and multi-state problems 

[19]. 

In this paper, using the improved SFLA, the most 

appropriate possible arrangement for DERs to 

reduce the operating costs in MG has been 

studied. The process is that first, the cost of all 

small-scale power plants is expressed according to 

their operating constraints, and then the improved 

SFLA is improved by selecting more favorable 

paths than before. In the next step in the IEEE 

standard systems, the best arrangement that DERs 

may be placed in different load capacities to 

maximize operating profit will be selected, and at 

the end, the network reliability indicators will be 

evaluated. 

 

2. Problem Formulation  
Figure 1 shows the structure of an MG that 

interacts with the electricity market. As it can be 

seen, the system under study includes the wind 

turbine units, solar units, fuel cells (FCs), 

batteries, DC/AC converters and loads (such types 

of loads including interruptible load, and non-

interruptible load are also considered). This paper 

aims to determine the optimal number of DERs in 

MG provided that the total cost is minimized. In 

this regard, first, the prices of each production unit 

will be described. 
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Figure 1. An MG considering DER exchanging energy 

with upstream network. 
 

2.1. Solar unit model  
The data related to the power reflected on the 

surface of the array is converted to its output 

power using equation 1. 
 

𝐏𝐏𝐕 =
𝐆

𝟏𝟎𝟎𝟎
𝐏𝐏𝐕,𝐫𝐚𝐭𝐞𝐝𝛈𝐏𝐕 (1) 

 

In this equation, G is the radiant power 

perpendicular to the surface of the array (W/m2), 

and 𝑃𝑃𝑉,𝑟𝑎𝑡𝑒𝑑 is the nominal power of each array 

obtained per 21,000 W/m2. 𝜂𝑃𝑉 is also equal to the 

efficiency of the DC/DC converter installed 

between each array and the DC bus. If the vertical 

and horizontal components of the sun's radiant 

power are available at any given moment, the 

radiated power (vertically) on the surface of the 

array installed with the ӨPV angle can be 

calculated according to equation 2 [20]. 
 

𝐆(𝐭, 𝛉𝐏𝐕) = 𝐆𝐕(𝐭) 𝐜𝐨𝐬(𝛉𝐏𝐕) + 𝐆𝐇(𝐭) 𝐬𝐢𝐧(𝛉𝐏𝐕) (2) 
 

Where GH(t) and GV(t) are the horizontal and 

vertical radiation rates in my time step (W/m2), 

respectively. 

 

2.2. Wind turbine model  
The power-velocity characteristics of the wind 

turbine used in modeling this work are given in 

reference [21]. This curve is usually provided by 

the turbine manufacturer, and expresses the actual 

power transmitted from the turbine to the DC bus. 

The output power (𝑃WT) in terms of wind speed 

(𝑣𝑊) of this turbine can be approximated by 

equation 3, where 𝑣𝑐𝑢𝑡𝑖𝑛, 𝑣𝑐𝑢𝑡𝑜𝑢𝑡, and 𝑣𝑟𝑎𝑡𝑒𝑑 are 

the low cut-off speeds, high cut-off speed, and 

nominal speed (m/s) of the turbine, respectively, 

and 𝑃𝑊𝑇,𝑚𝑎𝑥 is the maximum output power of the 

turbine (kW), and 𝑃𝑓𝑢𝑟𝑙 is the output power at 

high cut-off speed. In this work, m is considered 

to be equal to 3. 

(3) 
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The output power fluctuations of wind turbines 

caused by changes in wind speed are neither 

completely random nor entirely predictable. For 

an extended operation of a wind farm, the 

prediction error is like a normal distribution 

function. In order to reduce the risk of forecast 

error in system planning, we can calculate the 

forecast error at different levels of reliability. The 

forecast error of wind energy production is known 

as the production risk. For example, a 95% 

confidence level says that the probability that the 

forecast error is greater than the amount of 

production risk is less than 5%. This method is 

used in this work to wind energy capacity with a 

certain level of reliability in the production 

planning. The predicted wind energy minus 

production risk is the amount of power that should 

use in system planning. Since the planners are 

more inclined to overestimate the production of 

wind turbines, a one-way distribution curve is 

considered in this work. The following equations 

estimate the level of error above the one-way 

curve of the normal distribution with a confidence 

level of (100-α)%. 
 

(3) 
𝐞′ = 𝛍𝐞 + 𝐳𝛂𝛔𝐞 

𝐏(𝐞 − 𝛍𝐞 > 𝐳𝛂𝛔𝐞) =
𝛂

𝟏𝟎𝟎
 

 

In the above equations, 𝑒′ represents the 

production risk, 𝜇𝑒 is the mean wind forecast 

error, and 𝜎𝑒 is the standard deviation of the 

standard wind forecast error. In fact, 𝑒′is a value 

that says that the probability that the prediction 

error is higher than 𝑒′ is less than %α. Thus 

according to equation 4, this can be shown. 
 

(4) 𝐏(𝐞 < 𝐞′) = 𝟓 % 
 

Using the values of the mean error, standard 

deviation, and 𝑧𝛼, the production risk (𝑒′) is 

calculated from the previous equations, and the 

number obtained is subtracted from the predicted 

value, and this is the number that is entered as the 

output of the wind generator in the optimization 

problem. 

 

2.3. Electrolyzer model  
Electrolysis is the process of using electricity to 

split water into hydrogen and oxygen. Thus a 
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direct current of electricity passes through the 

path between two electrodes immersed in water, 

and causes the water to decompose into oxygen 

and hydrogen. Oxygen is produced on the cathode 

side and hydrogen on the anode side. Hydrogen is 

usually made at a pressure of about 30 bars. In 

order to generate electricity in a PEM fuel cell, it 

is sufficient for the pressure of the reactants to be 

1.2 Bar (about slightly higher than the air 

pressure). However, increasing the density of the 

stored hydrogen sometimes increases its pressure 

by up to 200 bar [23]. Similarly, two storage tanks 

are used to reduce the energy required to 

compress hydrogen. The output of the electrolyzer 

is connected directly to the first tank after filling 

the first tank, the compressor is turned on, and 

then the hydrogen inside this tank is considered 

and will be filled into the second tank, which is 

called the high-pressure tank. This process will 

avoid the compressor running consecutively, and 

consumes less energy overall. In the proposed 

model of this work, due to the use of proton 

membrane fuel cell (PEM) and with considering 

that type of cell, the required hydrogen pressure is 

1.2 bar. The compressor-free design reduces the 

energy consumption although the software 

developed is very flexible and the compressor 

model can be easily added to process. The 

electrochemical interactions in the water 

electrolyzer are as follows (5): 
 

𝐇𝟐𝐎 →
𝟏

𝟐
𝐎𝟐 + 𝟐𝐇

+ + 𝟐𝐞− (5) 

 

In the electrolyzer modeling, the efficiency is used 

as an input parameter. The hydrogen heating value 

is 3.4 kWh/m3, which considering the efficiency 

of 90%, consumes 41.97 kWh of energy for the 

electrolyzer to produce one kg of hydrogen 

according to the following equation: 
 

𝐄𝐜𝐨𝐧𝐬 =

𝟑. 𝟒
𝟎. 𝟎𝟗
𝟎. 𝟗

= 𝟒𝟏. 𝟗𝟕
𝐤𝐖𝐡

𝐤𝐠
 (6) 

 

The weight of hydrogen produced per hour is 

obtained by dividing the excess energy produced 

from the system to the electrolyzer by 41.97. 
 

𝐇𝟐 =
𝐄𝐠𝐞𝐧(𝐤𝐖𝐡)

𝟒𝟏. 𝟗𝟕 (
𝐤𝐖𝐡
𝐤𝐠

)
 (7) 

 

2.4. PEM fuel cell model 

Fuel cells are electrochemical devices that convert 

the chemical energy directly into the electrical 

energy. PEM cells have a reliable operation under 

discontinuous operating conditions, and are 

industrially produced on a large scale and 

commercially available. This type of fuel cell is 

suitable for large and in-situ applications, and has 

a relatively fast dynamic response, about 1 to 3 s. 

Therefore, in this work, a PEM type fuel cell is 

used. The output power of this fuel cell can be 

calculated as a function of the hydrogen power 

input to it and its efficiency (𝜂𝐹𝐶), which can be 

assumed to be constant [24]. 
 

𝐏𝐅𝐂−𝐢𝐧𝐯 = 𝐏𝐭𝐚𝐧𝐤−𝐅𝐂𝛈𝐅𝐂 (8) 

 

2.5. Hydrogen tank model 

The energy that is stored in the tank can be 

calculated for each time step from equation 9. 
 

𝐄𝐭𝐚𝐧𝐤(𝐭) = 𝐄𝐭𝐚𝐧𝐤(𝐭 − 𝟏) + 𝐏𝐞𝐥𝐞𝐜−𝐭𝐚𝐧𝐤𝚫𝐭 −
𝐏𝐅𝐂−𝐭𝐚𝐧𝐤𝚫𝐭/ 𝛈𝐬𝐭𝐨𝐫𝐚𝐠𝐞  

(9) 

 

In this equation, Δ𝑡 is the length of each time step, 

𝑃𝑒𝑙𝑒𝑐−𝑡𝑎𝑛𝑘 shows the transfer power from the 

electrolyzer to the hydrogen tank, and 𝑃𝐹𝐶−𝑡𝑎𝑛𝑘 

represents the transfer capacity from the hydrogen 

tank to the fuel cell; 𝜂𝑠𝑡𝑜𝑟𝑎𝑔𝑒 also represents the 

efficiency of the storage system, which can 

indicate the leakage or pumping losses. The 

maximum quantity of hydrogen stored in a tank is 

considered equal to its nominal capacity. It is also 

assumed that not all the stored hydrogen in the 

tank can be extracted due to some problems 

including the pressure drop inside the tank. The 

hydrogen in the tank will always have a high and 

low range. 
 

𝐄𝐭𝐚𝐧𝐤(𝐭)
𝐦𝐢𝐧 < 𝐄𝐭𝐚𝐧𝐤(𝐭) < 𝐄𝐭𝐚𝐧𝐤(𝐭)

𝐦𝐚𝐱 (10) 

 

2.6. Battery model 

The battery source is used in order to supply the 

load in the absence of the renewable energy 

sources. The difference between the power 

produced and the power required by the load 

indicates whether the battery should be charged or 

discharged. The amount of battery bank charge in 

the time period t  is obtained using equation 11, 

which in the above relation 𝐸𝑏𝑎𝑡(𝑡 − 1) and 

𝐸𝑏𝑎𝑡(𝑡) represents the amount of battery bank 

charge in the time periods (t-1) and (t); 𝜂𝑏𝑎𝑡 and 

𝜂𝑑𝑖𝑠 are the charge and discharge efficiency of the 

battery bank, respectively. 
 

𝐄𝐛𝐚𝐭(𝐭) = 𝐄𝐛𝐚𝐭(𝐭 − 𝟏) + 𝐏𝐠𝐞𝐧 𝚫𝐭 𝛈𝐛𝐚𝐭  −

𝐏𝐛𝐚𝐭−𝐢𝐧𝐯𝚫𝐭/ 𝛈𝐝𝐢𝐬  
(11) 

 

2.7. CHP model 

According to the efficiency and load percentage in 

CHP, the power thermal can be approximated in 

piecewise linear (Figure 2). Given that only one 

part of the approximated graph can be used in 
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each interval, for modeling pure power and 

achieve that propose, we will have: 
 

(12) 𝐏𝐂𝐇𝐏 =∑ ∑ 𝛄𝐞
𝐂𝐇𝐏

𝐍𝐂𝐇𝐏

𝐣=𝟏

∗ 𝐏𝐭,𝐣
𝐠𝐚𝐬(𝐂𝐇𝐏)

𝐓

𝐭=𝟏

 

(13) 𝐏𝐭,𝐣−𝟏
𝐞𝐥𝐞𝐜(𝐂𝐇𝐏) ∗ 𝐤𝐭,𝐣

𝐂𝐇𝐏 < 𝐏𝐭,𝐣
𝐂𝐇𝐏 < 𝐏𝐭,𝐣

𝐞𝐥𝐞𝐜(𝐂𝐇𝐏) ∗ 𝐤𝐭,𝐣
𝐂𝐇𝐏 

(14) ∑ 𝐤𝐭,𝐣
𝐂𝐇𝐏 = 𝟏

𝐍𝐂𝐇𝐏

𝐣=𝟏

 

 

 
 

Figure 2. Available and convex area in CHP electrical and 

thermal output powers. 
 

In the above equations, γe
CHP is the percentage of 

the electric power generated from the heat 

received. The rest of the energy will be converted 

to heat, which will provide thermal power. The 

parameters Pt,j
CHP and Pt,j

elec(CHP)
 are the total 

power generated by CHP and the electrical power 

of CHP in each block of linear blocks, 

respectively. Equation 13 states that the 

production capacity in each block is between the 

value before and after it, and the order is 

observed. kt,j
CHP is a binary variable. Equation 14 

also states that the output electrical power is taken 

from only one of the linear block blocks. An 

Induction furnace is also used to provide a heat 

profile. The amount of heat generated by this 

equipment, which uses natural gas as an input, is 

obtained by equation 15. 
 

(15) 𝐇𝐅𝐮𝐫𝐧𝐚𝐜𝐞 =∑ ∑ 𝛄𝐞
𝐟𝐮𝐫𝐧𝐚𝐜𝐞

𝐍𝐟𝐮𝐫𝐧𝐚𝐜𝐞

𝐥=𝟏

∗ 𝐏𝐭,𝐥
𝐠𝐚𝐬(𝐢𝐧𝐩𝐮𝐭)

𝐓

𝐭=𝟏

 

 

For the thermal power generated by CHP, we also 

have: 
 

(16) 𝐇𝐂𝐇𝐏 =∑ ∑ 𝛄𝐠
𝐂𝐇𝐏

𝐍𝐂𝐇𝐏

𝐣=𝟏

∗ 𝐏𝐭,𝐣
𝐠𝐚𝐬(𝐂𝐇𝐏)

𝐓

𝐭=𝟏

 

where 𝛾𝑔
𝐶𝐻𝑃 is the percentage of heat output 

produced from the received gas. The cost of 

starting and shutting it down is also calculated 

according to Equations 17 and 18. 

 

(17) 𝐂𝐒𝐔
𝐂𝐇𝐏 = 𝐒𝐔𝐣

𝐂𝐇𝐏 ∗ 𝐰𝐭(𝟏 − 𝐰𝐭−𝟏) 

(18) 𝐂𝐒𝐃
𝐂𝐇𝐏 = 𝐒𝐃𝐣

𝐂𝐇𝐏 ∗ 𝐰𝐭−𝟏(𝟏 − 𝐰𝐭) 
 

In the above equations, SUj
CHP and SDj

CHP are the 

cost of starting and shutting down CHP in the j 

block with CHP, respectively. The binary variable 

wt also indicates whether CHP is on or off.  
 

(19) 𝐏𝐂𝐇𝐏 − 𝐏𝐀
𝐂𝐇𝐏 −

𝐏𝐀
𝐂𝐇𝐏 − 𝐏𝐁

𝐂𝐇𝐏

𝐇𝐀
𝐂𝐇𝐏 −𝐇𝐁

𝐂𝐇𝐏
∗ (𝐏𝐂𝐇𝐏 − 𝐏𝐀

𝐂𝐇𝐏) < 𝟎 

(20) 𝐏𝐂𝐇𝐏 − 𝐏𝐁
𝐂𝐇𝐏 −

𝐏𝐁
𝐂𝐇𝐏 − 𝐏𝐂

𝐂𝐇𝐏

𝐇𝐁
𝐂𝐇𝐏 −𝐇𝐂

𝐂𝐇𝐏
∗ (𝐏𝐂𝐇𝐏 − 𝐏𝐁

𝐂𝐇𝐏) > 𝟎 

(21) 𝐏𝐂𝐇𝐏 − 𝐏𝐂
𝐂𝐇𝐏 −

𝐏𝐂
𝐂𝐇𝐏 − 𝐏𝐃

𝐂𝐇𝐏

𝐇𝐂
𝐂𝐇𝐏 −𝐇𝐃

𝐂𝐇𝐏
∗ (𝐏𝐂𝐇𝐏 − 𝐏𝐂

𝐂𝐇𝐏) > 𝟎 

 

Another noteworthy point is that the convex 

region allowed for CHP operation, due to the 

dependence of the electrical and thermal power of 

the output, should only be in the closed 

environment of figure 2; otherwise, the answers 

obtained from the problem optimization are wrong 

and are out of the search space. For this purpose, 

the CHP performance range can be formulated 

according to the following equations. The 

horizontal axis of figure 2 shows the heat output 

(𝐻𝐶𝐻𝑃), and the vertical axis also shows the 

electrical output power (𝑃𝐶𝐻𝑃). Equation 19 

models all points below the line AB. Equations 20 

and 21 include all the points above the BC and 

CD lines, respectively. The common denominator 

of this set of triple equations is the allowable 

performance range of CHP. 

 

2.8. Boiler model 

The cost of generating heat by boiler I at hour T 

and scenario s can be calculated without 

deducting the maintenance cost of equation 22. 
 

(22) 𝐜𝐨𝐬𝐭𝐬,𝐢,𝐭
𝐛𝐨𝐢𝐥𝐞𝐫 =

𝐇𝐬,𝐢,𝐭
𝛈𝐛𝐨𝐢𝐥𝐞𝐫,𝐢

𝛑𝐠𝐚𝐬,𝐭 

 

In the above equation, 𝐻𝑠,𝑖,𝑡 shows the thermal 

power produced by the boiler, 𝜂𝑏𝑜𝑖𝑙𝑒𝑟,𝑖 is its 

efficiency, and 𝜋𝑔𝑎𝑠,𝑡 indicates the price of natural 

gas. 

 

2.9. Uninterruptible and interruptible loads 

Uninterrupted load must always be supplied; 

almost all the electrical loads are in this category. 

In order to increase the reliability of the 

uninterrupted load, in the case of sudden 

fluctuations in the production capacity of 

renewable units and load fluctuations, this type of 

load requires some operational reserve. A short-
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term energy storage is required to cope with the 

power load fluctuations or accommodate the 

sudden losses in some products. An MG system 

with many small generators is a flexible system; 

small generators do not store significant energy in 

their mechanical inertia, and do not necessarily 

react quickly to sudden load changes. The 

operational storage provides the margin of safety 

for power systems, both small and large, 

according to the uncertainty of the load and the 

uncertainty of the output power of renewable 

energy units for operation with high reliability. In 

the event of a power outage from the electricity 

supplier, a large fine must be paid to the 

consumer. If 𝐶𝑙𝑠 is considered equal to the average 

loss due to the interruption of each kwh of load 

($/kWh) of this type of load, then the net present 

value of the loss of this type of load can be 

obtained according to Equation 23. 
 

(23) 𝐍𝐏𝐂𝐥𝐬 = 𝐋𝐎𝐄𝐄 𝐂𝐥𝐬 𝐏𝐖𝐀(𝐢𝐫, 𝐑) 
 

PWA(ir, R) is the present value factor of annual 

payments and LOEE is the Loss of Energy 

Expectation, which in the next section, their term 

will be explained. The supply of this type of load 

does not require operational reserves, and a small 

percentage of load demand can be the type of 

interruptible load (similar to cinemas and 

entertainment centers, etc.). These types of 

consumers receive money as a reward from the 

MG manager in a power outage. In other words, 

the power outage of this type of subscriber does 

not impose a cost on the MG uninterrupted loads.  

 

2.10. Demand response program (DRP) 

Since the consumer response to time-varying rates 

is not under the network operator's control, the 

load response provided by time-based applications 

cannot be selectively controlled and distributed. In 

contrast, in the distributable load response 

programs, the system operator can use the 

response to the load from the customers 

depending on the conditions and requirements of 

the system, and include them in the market 

settlement process. The distributable load 

response programs include aggregation of load 

response. In this program, the load response 

brokers participate in the electricity market as an 

intermediary between the independent operation 

of the system and customers. The reduction price 

is determined based on the agreement of the load 

and customer response broker. In this model, the 

load response brokers offer their proposals to the 

energy market the day before. ISO then 

implements the recommendations provided by the 

brokers considering the priorities and features of 

reducing the burden on customers, launches the 

load response program, and sends the program 

information to the participants, and asks them to 

submit their proposed packages. If these proposals 

are selected in the market settlement process to be 

exploited, then the participants should reduce the 

planned load for the next day. In this work, the 

operator's performance, demand response, and 

MG operator are integrated and presented in the 

microgrid energy management system. In addition 

to aggregating the load response, the MG energy 

management system also undertakes its 

implementation and distribution, thus minimizing 

the cost of operating MG by using all the potential 

in MG including loads and production units. If in 

the modeling DR programs, only a 5% reduction 

in consumption, then the rate of price reduction 

will be very significant and about 40%. The 

sensitivity of load is defined as the ratio of 

relative changes in load to relative changes in 

price, according to equation 23. 𝜌0 is the initial 

market price in $/MWh, and 𝑞0 is the initial load 

valued in MWh. 
 

(24) 
𝐄 =

𝛛𝐪

𝛛𝛒
=
𝛒𝟎
𝐪𝟎

𝐝𝐪

𝐝𝐩
 

(25) 

𝛏𝐢𝐢 =
∆𝐝(𝐭𝐢)

∆𝛒(𝐭𝐢)

𝛒𝟎
𝐪𝟎

 

𝛏𝐢𝐣 =
∆𝐝(𝐭𝐢)

∆𝛒(𝐭𝐣)

𝛒𝟎
𝐪𝟎

 

where 𝜌0 is the initial market price in $/MWh, and 

𝑞0 is the initial demand value in MWh. Self-

elasticity (ξ𝑖𝑖) and mutual elasticity (ξ𝑖𝑗) have both 

positive and negative values, respectively. If the 

relative change in load is greater than the relative 

price change, it is called elastic. On the other 

hand, if the relative change in load is smaller than 

the relative price change, it is called inelastic. 

Therefore, the elastic coefficient for one hour of a 

day can be arranged by a 24-by-24 matrix. The 

details of the modeling process and formulation of 

the load response program, which shows how load 

reduction affects the customer profits, have been 

reviewed in [23, 24]. In any case, in this work, the 

corresponding economic response model of the 

load is presented as (25): 
 

(26) 

𝐝(𝐢) = 𝐝𝟎(𝐢) + ∑ 𝐄𝟎 (𝐢،𝐣).  
𝐝𝟎(𝐣)

𝛒𝟎(𝐣)
 .  𝐀(𝐣) +𝟐𝟒

𝐣=𝟏

𝐄(𝐢)[𝛒
 
(𝐢)−𝛒𝟎(𝐢)+𝐀(𝐢)]

𝛒𝟎(𝐢)
  

∀𝐢 = 𝟏 ، 𝟐 ، … ، 𝟐𝟒 
 

The above equation shows how much customer 

load is required to achieve the maximum interest 
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within 24 hours. This model also includes the 

price effect at the time of use. Therefore, the 

following model is used instead: 
 

(27) 𝐝(𝐢) = 𝐝𝟎(𝐢) + ∑ 𝐄𝟎 (𝐢،𝐣) .  
𝐝𝟎(𝐣)

𝛒𝟎(𝐣)
 .  𝐀(𝐣)

𝟏𝟖

𝐣=𝟏𝟒

 

 

2.11. DC/AC converter 

Not all the renewables manufacturers are 

synchronous machines. The wind turbines are 

often induction generators, and the solar units are 

connected to the system through inverters. The 

inverters can control the frequency, as the 

frequency of the inverters can be controlled 

independently of the load. The DC/AC converter 

converts the DC electrical power to the AC power 

at the desired load frequency for load 

consumption. Its efficiency can model the effect 

of converter losses. 
 

(28) 𝐏𝐢𝐧𝐯−𝐥𝐨𝐚𝐝 = (∑𝐏𝐃𝐆)/𝛈𝐝𝐜−𝐚𝐜 

 

2.12. Reliability 

Overall, the reliability studies of power systems 

are divided into long-term (planning) and short-

term (operation). The reliability of the generating 

units is also examined in these two intervals. 

These studies are called the "static reliability 

assessment of the production units" in the 

planning conditions, and the "reliability 

assessment of the rotating production units" or the 

"rotating storage units" in the operation 

conditions. In the static studies, this amount of 

capacity must respond to the planned outages 

(maintenance), unplanned (emergency exit), and 

load growth, while in the conditions of operation, 

the purpose is to supply the load under emergency 

exits and uncertainty of the load. The reliability 

calculations are one of the important issues that 

should be considered along with the economic and 

environmental assessments resulting from the 

distributed generation resources. An accurate 

evaluation of the economic benefits of using these 

units requires examining the level of reliability of 

the systems. The limitation of the available energy 

from new energy sources and their discontinuous 

behavior reduces the level of reliability of the 

system. The authorities have provided several 

indicators in order to calculate the reliability of 

the systems including the indicators such as the 

Loss of Load Expectation (LOLE), Loss of 

Energy Expectation (LOEE) or Expected Energy 

Not Supplied (EENS), Loss of Power Supply 

Probability (LPSP), Equivalent Loss Factor 

(ELF), and other such cases were mentioned. The 

above indicators are defined by the following 

equations [25]. In the above equation, 𝐸(𝐿𝑂𝐿(𝑡)) 
is the mathematical expectation of disconnection 

in the time step t that can be defined by equation 

29 [25]. 
 

(29) 𝐋𝐎𝐄𝐄 =∑𝐄(𝐋𝐎𝐋(𝐭))

𝐍

𝐭=𝟏

 

 

In the above equation, 𝐸(𝐿𝑂𝐿(𝑡)) is the 

mathematical expectation of disconnection in the 

time step t that can be defined by equation 30. 
 

(30) 𝐄(𝐋𝐎𝐋(𝐭)) =∑𝐓𝐬𝐏𝐬
𝐬𝛜𝐒

 

 

In this regard, 𝑃𝑠 is the probability of being in the 

s position, and 𝑇𝑠 is the probability of being off 

load if it is in this position. S is also the total set of 

possible states for the system. 
 

(31) 𝐋𝐎𝐄𝐄 = 𝐄𝐄𝐍𝐒 =∑𝐄(𝐋𝐎𝐄(𝐭))

𝐍

𝐭=𝟏

 

 

Here, 𝐸(𝐿𝑂𝐸(𝑡)) is the mathematical expectation 

of the amount of load lost in my time interval, 

which can be defined by equation 31. 
 

(32) 𝐄(𝐋𝐎𝐄(𝐭)) =∑𝐐𝐬𝐏𝐬
𝐬𝛜𝐒

 

 

Where Qs is the amount of demand lost in terms 

of (kWh) if it is in the s position. 

 

2.13. Cost of pollution and losses 

The cost of pollution and power flow losses in the 

distribution network will be calculated according 

to the formulation presented in references [11-16]. 

 

3. Objective function 

In this section, according to the terms and costs 

presented in the previous section, the objective 

function of the problem in equation 32 is 

explained. The objective function of the problem 

is to maximize the profit from the sale of battery 

power or surplus electricity to the grid. The first 

sentence is the cost or benefit of using the load 

response programs. The second sentence is the 

cost of operating the batteries. The third and 

fourth sentences show the cost of disconnecting 

the load and the cost of converters and inverters, 

respectively. In the first sentence of the second 

line of the objective function, the cost of buying 

and selling electricity to the upstream network has 

been announced. Then the costs of the distributed 
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generation units that are in the network are 

discussed. The proposed objective function is 

optimized using the improved frog mutation 

algorithm, and its method has been given in the 

next section. 

 

(33) 𝑂. 𝐹. = 𝑚𝑎𝑥

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

∑∑∑[𝐿𝐷𝑅(𝑟, 𝑑, 𝑡)𝛺(𝑟, 𝑑, 𝑡)]

 

𝑟′

 

𝑑

 

𝑖

+∑[𝑝𝑣 . 𝑁𝑏𝑎𝑡 . 𝑝𝑟𝑖𝑐𝑒]

 

𝑧

+ 𝑁𝑃𝐶𝑙𝑠 + 𝑃𝑖𝑛𝑣−𝑙𝑜𝑎𝑑

 

 

+∑(−𝜋𝑇𝑂𝑈 × 𝐿𝑜𝑎𝑑𝑡 + 𝜋𝑠𝑒𝑙𝑙 × 𝑃𝑡
𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

)

𝑡

−∑∑𝐶𝑜𝑠𝑡𝐶𝐻𝑃
𝑖𝑡

− 𝐶𝑜𝑠𝑡𝑙𝑜𝑠𝑠

 

 

−∑∑𝐶𝑜𝑠𝑡𝐵𝑜𝑖𝑙𝑒𝑟
𝑘𝑡

−∑∑𝐶𝑜𝑠𝑡𝐹𝐶
𝑗𝑡

−∑∑𝐶𝑜𝑠𝑡𝑊𝑇
𝑟𝑡

−∑∑𝐶𝑜𝑠𝑡𝑃𝑉
𝑔𝑡

− 𝐶𝑜𝑠𝑡𝑃𝑜𝑙𝑙
}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

4. Improved Shuffled Frog algorithm 

The Shuffled Frog algorithm was first introduced 

in 2003 by Eusuff and Lansey [26]. In this 

algorithm, each frog has information about an 

answer to a problem. The SFLA algorithm 

contains the initial population of the possible 

problem answers. These answers are a set of 

virtual frogs that are themselves divided into 

several categories. Each group of frogs has 

characteristics that can change depending on the 

characteristics of frogs in other groups. SFLA also 

has a local search that acts like a particle 

clustering algorithm. For this purpose, the frogs in 

each group improve their position in relation to 

food by exchanging information with each other, 

and after each local search, the information 

obtained from the groups is compared with each 

other. In general, the SFLA steps will be as 

follow: 

Step 1: The initial population is randomly 

generated to the number Np, and then the fit of the 

members of this population is determined. 

Step 2: The members of the population are 

arranged in the ascending order based on the fit. 

Step 3: The frogs are divided into m groups so 

that each group contains n frogs. In other words, 

Np = n ×m. This division should be such that the 

first frog in the population is assigned to the first 

group, the second frog to the second group, and 

the M frog to the M group. Then the frog number 

m + 1 in the first group and so on, the allocation 

process continues until n frogs are placed in each 

one of the m groups. 

Step 4: In this step, the local search includes the 

following steps: we denote the number of 

categories by ml. First, ml is equal to zero, and is 

compared with the total number of categories (m). 

The variable yl also counts the number of local 

searches. In this step, set yl to zero, and compare 

with the maximum local search steps. Therefore, 

we will have: 
 

(34) 
𝐦𝐥 = 𝐦𝐥 + 𝟏 
𝐲𝐥 = 𝐲𝐥 + 𝟏 
 

Then for each category, the frog with the best fit 

and the frog with the worst fit are found, and are 

named 𝑋𝑏 and 𝑋𝑤, respectively. The position of 

the best fit among all frogs is also called 𝑋𝑔. The 

position of the frogs is then improved using the 

following equation, as shown in figure 3: 
 

(35) 
𝐃𝐢 = 𝐫𝐚𝐧𝐝 × (𝐗𝐛 − 𝐗𝐰) 
𝐗𝐰
𝐧𝐞𝐰 = 𝐗𝐰

𝐨𝐥𝐝 + 𝐃𝐢 
 

where rand is a random number between 0 and 1. 

Given that −𝐷𝑚𝑎𝑥 < 𝐷𝑖 < 𝐷𝑚𝑎𝑥, 𝐷𝑚𝑎𝑥  will 

indicate the maximum change in the position of 

the frogs. If a better frog (better answer) is 

obtained during this stage, it will be replaced with 

the previous frogs; otherwise, in equation 19, 𝑋𝑔 

is used instead of 𝑋𝑏, and the above steps will be 

repeated, and if a better answer is obtained, 

replaces the previous answer; otherwise, a frog is 

randomly generated and replaced with the 

previous frog. 
 

 
 

Figure 3. How to create a new path for frogs. 
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If 𝑚𝑙 < 𝑚, 𝑚𝑙 = 𝑚𝑙 + 1 must be replaced, and if 

𝑦𝑙 < 𝑦𝑚𝑎𝑥, 𝑦𝑙 = 𝑦𝑙 + 1 must be replaced; 

otherwise, we will return to the second step.  

Step 5: If the convergence conditions are not 

achieved, the search process is repeated from step 

3; otherwise, the algorithm is stopped, and the 

best answer is considered as the output. In order to 

improve the frog jump algorithm, it should be 

noted that the classical SFLA algorithm is placed 

along the 𝑋𝑏 and 𝑋𝑤 lines when the frogs with the 

worst fit strengthen their position relative to the 

group or the best frog. This may lead the 

algorithm to the wrong answers. For this reason, a 

way to improve this algorithm is introduced. The 

main idea of this method is to expand the 

direction and length of each frog's jump, thus 

preventing the algorithm from converging 

incorrectly. 

In this method, if the first four frogs are randomly 

selected among the arranged frogs in such a way 

that relation (36) is established, then the change of 

the position of the frogs is selected as relation 

(37). 
 

(36) 𝐗𝐠𝟏 ≠ 𝐗𝐠𝟐 ≠ 𝐗𝐠𝟑 ≠ 𝐗𝐠𝟒 

(37) 

𝐗𝐜𝐡𝐚𝐧𝐠𝐞 = 𝐗𝐠𝟏 + 𝐫𝟏(𝐗𝐠𝟐 − 𝐗𝐠𝟑) + 𝐫𝟐(𝐗𝐠 − 𝐗𝐠𝟒)  
 

𝐗𝐰,𝐣 
𝐧𝐞𝐰 = {

𝐗𝐜𝐡𝐚𝐧𝐠𝐞       𝐢𝐟 𝐫𝟑 < 𝐫𝟒  𝐨𝐫  𝐣 = 𝐫𝐩
𝐗𝐠                                𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 

 

 

where t represents the number of iterations of the 

category, and 𝑟𝑝 is a random number between 1 

and the number of categories. The variables 

𝑟1, 𝑟2, 𝑟3, 𝑎𝑛𝑑 𝑟4 are all random numbers between 

zero and 1. If this improvement leads to a better 

answer, it replaces the previous answer; 

otherwise, a random answer is generated and 

replaces the previous answer. 

 

5. Simulation and analysis of results 

This section deals with the case simulations in the 

standard 69-bus and 118-bus IEEE networks. It 

should be noted that the details of the power 

generation of the units are given in the 69-bus 

IEEE network, and in the other two networks, it 

will be enough to provide the results only. Figure 

4 shows the amount of electrical and thermal 

power required on a given day in the 69-bus 

network. The price of electricity purchased from 

the upstream network as well as the cost of natural 

gas consumption is also shown in figures 5 and 6 

[29]. 

In the ISFLA algorithm, the initial population 

value is 50 frogs. The program is performed in the 

MATLAB software using a system with Windows 

7 specifications, GB4 RAM, and CPU core i7, 

which is performed in 100 replications.  First, the 

power generation range of the production units is 

shown in table 1, and the convergence diagram for 

the first scenario (base scenario) is shown in 

figure 7.  
 

 
 

Figure 4. Electrical and thermal charge profile of MG. 
 

 
 

Figure 5. Electricity price chart with ToU tariff. 
 

 
Figure 6. Gas price chart. 

 
Table 1. Production capacity range of units. 

 

DG type 

Capacity  
[kW] 

(min, max) 

price 
 $/kWh] 

Start up/ shut 
sown costs 

CO2 

 [kg/MWh] 

FC (20, 60) 0.752 2.68 703.52 

PV (0, 50) 0.704 - - 

Boiler (10, 100) 0.423 1.82 83.35 

Wind (0, 80) 3.015 - - 

CHP (25,65) 1.572 2.57 301.45 
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Figure 7. Convergence diagram of the objective function 

in the first scenario by the proposed ISFLA algorithm. 
In these simulations, four scenarios are presented, 

as follow: 

 Optimization of the objective function with 

the same weight coefficients (1/3) on the 

amount of pollution, losses, and DRP. 

 Optimization of the objective function with a 

weight coefficient of 50% for DRP and a 

weight coefficient of 25% for both losses and 

pollution. 

 Optimization of the objective function with a 

weight coefficient of 50% for pollution and a 

weight coefficient of 25% for both losses and 

DRP. 

 Optimization of the objective function with a 

weight coefficient of 50% for losses and a 

weight coefficient of 25% for both pollution 

and DRP. 
 

 
Figure 8. Production capacity of fuel cell in all four case studies. 

 

 
Figure 9. Amount of photovoltaic power generation in all four case studies. 

 

 
Figure 10. Production capacity of wind turbines in all four case studies. 
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Figure 11. Production capacity of CHP in all four case studies. 

 

 
Figure 12. Amount of boiler production capacity in all four case studies. 

 

 
Figure 13. Battery participation capacity in all four case studies. 

 

 
Figure 14. Level of participation of DRP programs in reducing electrical demand. 
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Figure 15. Level of participation of DRP programs in reducing thermal demand. 

 

6. Discussion 

In the first scenario, given that the pollution, 

network losses, and DRPs are observed equally, 

this scenario can be considered as a baseline, and 

other case studies can be evaluated according to 

Scenario 1. The operating costs, in this case, are 

estimated at $3,250, with DR programs reducing 

the electrical and thermal demand costs by 12.7% 

and 8.5%, respectively. In the second scenario, the 

weight of minimizing operating costs increases 

due to the increase in profits from the use of DRP. 

The output of the improved frog jump algorithm is 

estimated to cost $2,675, with a reduction in the 

electricity and heating costs of 19.9% and 14.3%, 

respectively. In this case, the consumer 

participation in the operation has reached its 

maximum. In the third scenario, the weight 

reduction of pollution caused by fossil fuels in 

CHP and boiler, and most of the other provisions 

will be the subject, will bring the operating costs 

in 2859 dollars. In this case, the amount of 

electricity and heat savings according to DRP 

programs are 8.4% and 6.6%, respectively. 

Finally, in the fourth scenario, with the increase in 

the impact of losses, the operating cost reaches 

$2,968, and the DR programs have a positive 

effect of 10.9% and 7.8% on the supply of 

electrical and thermal demand, respectively. 

Figures 8 to 12 illustrate the capacities generated 

by distributed generation sources in the studied 

scenarios. It is observed that most of the thermal 

power is supplied by the boiler, and only 20% of 

it is supplied by CHP. In figure 13, the impact of 

participation in the battery energy management 

program is well-described. The battery is 

discharged during the peak hours and charges 

during low hours. The degree of participation of 

the DRP programs in all four scenarios is also 

shown in figures 14 and 15. 
 

Table 2. Comparison of loss and pollution costs in the 

studied scenarios 
 

Costs Case 4 Case 3 Case 2 Case 1 

Loss 108.5 $ 158.1 $ 123.9 $ 175.5 $ 

Pollution 108.9 $ 82.3 $ 102.5 $ 103.2 $ 

 

Table 3. Optimal arrangement of DERs in IEEE 69-bus 

network 
 

DERs FC PV WT CHP Boiler 

Case 

1 

Numbers 4 4 1 2 2 

Bus No. 

45-

51-

61-34 

36-

50-

54-63 

21 
12-

36 
33-21 

Case 

2 

Numbers 2 2 1 2 2 

Bus No. 26-33 61-40 14 8-28 44-6 

Case 

3 

Numbers 3 3 2 3 3 

Bus No. 
69-

47-43 

32-

48-5 

23-

40 

50-

34-

16 

19-38 

Case 

4 

Numbers 3 2 3 2 2 

Bus No. 
28-

14-49 
61-10 

26-

7-41 
44-9 54-21 

 

Table 4. Optimal arrangement of DERs in IEEE 118-

bus network 
 

DERs FC PV WT CHP Boiler 

Case 

1 

Numbers 5 7 3 2 4 

Bus No. 

17-

24-

50-

92-

117 

8-9-

26-

84-

87-

104-

112 

38-

56-

70 

46-

80 

22-45-

32-106 

Case 

2 

Numbers 3 4 3 2 3 

Bus No. 
8-24-

87 

15-

50-

71-98 

39-

59-

117 

6-90 
15-72-

109 

Case Numbers 5 6 4 3 4 
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3 

Bus No. 

5-23-

49-

83-

108 

13-

23-

56-

86-

95-

115 

12-

44-

80-

104 

35-

69-

102 

20-48-

68-107 

Case 

4 

Numbers 4 5 3 2 3 

Bus No. 

8-24-

50-

117 

9-15-

71-

95-

116 

38-

59-

104 

45-

91 

23-45-

108 

 

Table 5. Comparison of reliability index with existing 

algorithms. 
 

Index PSO [27] SFLA [26] 
TLBO 

[28] 
Proposed 

LOEE 25.3% 18.3% 16.7% 11.2 $ 

ELF 23.6% 21.9% 19.8% 16.2% 

 

Table 6. Comparison of different costs with existing 

algorithms. 
 

Total casts PSO [27] SFLA [26] 
TLBO 

[28] 
Proposed 

Mean 

voltage 

profile 

0.991 pu 0.967 pu 0.974 pu 1.013 pu 

Mean 

pollution 

costs 

244.284 $ 286.542 $ 
255.491 

$ 
212.974 $ 

Mean loss 

costs 
371.512 $ 399.476 $ 

384.597 

$ 
349.122 $ 

Operation 

costs 
3425 $ 3512 $ 3309 $ 3190 $ 

Benefits 

using DRP 
972 $ 655 $ 786 $ 989 $ 

 

The degree of reliability calculated by the 

proposed algorithm and their comparison with the 

existing algorithms are given in Table 5. It is 

observed that both the supplied energy is in the 

lowest possible state, and the definite demand 

index is lower than the other methods. Finally, 

Table 6 compares the output cost results and 

voltage profiles using the ISELA algorithm and 

the particle swarm method, ordinary frog jump, 

and TLBO. It is observed that in the proposed 

method, the voltage profile is in a more favorable 

condition than the others; the operating cost is 

minimized and the profit from participating in the 

DRP programs is reached to the maximum. 

 

7. Conclusion 

In this paper, an optimization method based on a 

SFLA was presented with the aim of finding the 

optimal solution for energy management in a MG 

considering different approaches. The objective 

function considered in this work included the 

pollution and loss costs, battery participation, and 

operating costs, the output results of which 

showed the best arrangement for the desired 

number of DER. According to the case studies, it 

was observed that during the low-consumption 

hours, energy was purchased at a cheap price from 

the upstream network and stored in the battery, 

and thus during the peak hours, in addition to 

providing the required power to the MG demands, 

an additional energy upstream network was sold 

to increase the revenue. The results of the case 

studies focused on an average of 16.5% and 

10.6% reduction in the total operating costs of 

losses and reduction of pollution, respectively. 

Considering the demand response plans could also 

reduce the operating costs by up to 24%, and was 

profitable for the customers. The upstream 

network (diesel generator) and boiler pollutions 

that changed the design of the network were not 

negligible. Finally, the best arrangement for the 

various IEEE standard MGs was selected, which 

were arranged to supply both heat and electricity 

at the same time. The results obtained and their 

comparison with the other methods showed that 

the profits of using DRP increased, while the 

operating cost decreased. The definitive demand 

reduction and LOEE reduction also increased the 

reliability of the proposed method. The most 

important advantage of using the proposal was 

finding the optimal answers in the shortest 

possible time and the highest accuracy compared 

to the existing optimization methods. 

Furthermore, using ISELA, the operating costs 

were significantly reduced.  
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