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Abstract 

In this work, the photo-voltaic power forecast for the next 24 hours by combining a time series forecasting 

model (LSTM) and a regression model (XGBoost) from direct irradiation only is performed. Several 

meteorological parameters such as irradiance, ambient temperature, wind speed, relative humidity, sun 

position, and dew point were identified as the influencing parameters of PV power variability. Thanks to the 

parameter extraction and selection techniques of the XGBoost model, only the direct irradiation could be 

kept as the input parameters. The LSTM model was used to predict the direct irradiation for the next 24 

hours and the XGBoost model to estimate the future power from the predicted irradiation. These models 

were developed under Python 3, the exploited data was downloaded in the PVGIS database for the city of 

Abomey-Calavi in Benin, and the prediction was carried out on a panel of 1000W of peak power. An 

experimental validation was then performed by comparing the predicted irradiance values with the measured 

values on site. It was obtained for the LSTM model a root mean square error of 3.66 W/m2 and for the 

XGBoost model a root mean square error and a regression coefficient of 1.72 W and 0.992129, respectively. 

These results were compared with the LSTM-XGBoost performances with irradiation, temperature, sun 

position, and wind speed as the inputs. It was found that the use of irradiation alone as input did not as such 

impair the forecast performance. The proposed method was also found to be more efficient than LSTM and 

CNN models used alone. 
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1. Introduction 

The interest in renewable energy sources (RES) 

has increased considerably in the recent years. 

The main reason for this growth is the expected 

depletion of the world's conventional energy 

resources (oil, natural gas, coal, and even 

uranium), whereas RES can be considered 

inexhaustible on a human scale. Another reason 

for the boom is the non-uniform distribution of 

conventional energy sources on the planet, 

associated with non-uniform consumption. Thus a 

considerable part of the world's population does 

not have access to electricity. In sub-Saharan 

Africa, for example, one in two people, or more 

than 600 million people, 75% of whom live in 

rural areas, do not have access to electricity, 

according to the International Energy Agency's 

(IEA) Africa Energy Outlook 2019 report [1]. Yet 

the electrical needs of these people can be met by 

distributed generation provided by renewable 

energy systems. A third important reason is the 

fight against polluting emissions that are the cause 

of many harmful phenomena such as the 

greenhouse effect, the stratospheric ozone hole, 

and global warming. These harmful gases are 

emitted by various human activities including the 

production of electricity from conventional energy 

sources. These harmful gases are emitted by 

various human activities including the production 

of electricity from conventional energy sources. A 

final reason is the availability of renewable energy 

sources, especially in Africa, where the theoretical 

potentials of solar photovoltaic and wind energy 

are 1,449,742 TWh/year and 978,066 TWh/year 

[2]. 

Faced with this fact, many governments and 

regional and international organizations have 

considered investments in the renewable energy 

sector as a priority. As a result, many initiatives 

have been launched to support the development of 

the energy sector, without their effectiveness 
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being, for the moment, fully satisfactory. Indeed, 

solar photo-voltaic and wind sources have two 

major flaws: their intermittency and their random 

variability. These defects lead to a random 

variation of the output power of the production 

systems and make them uncontrollable: they thus 

constitute an obstacle to the integration of the 

solar photovoltaic and wind sources. Faced with 

this intermittency and random variability, several 

solutions are proposed in the literature: 

• International exchanges, which require the 

interconnection of countries in the region [3]. 

• Energy storage, which is very expensive on a 

large scale and has environmental impacts 

from its manufacture or installation to its 

recycling [4, 5]. 

• Prediction of electricity production, which is 

one of the advantages offered by smart grids 

[6]. 

It is on the latter solution that we focus globally in 

this work. For the prediction of photo-voltaic (PV) 

power, two main techniques are used: the direct 

prediction from PV power records [7-21] and the 

indirect prediction that combines the prediction of 

meteorological parameters and mathematical 

models of PV power estimation [22-33]. The 

direct forecasting technique is the most 

appropriate when the system is already installed 

and operational because it is based on the use of 

PV power data and meteorological parameters of 

the installation site such as direct irradiation, 

diffuse irradiation, reflected irradiation, ambient 

temperature, wind speed or humidity as input to 

the model in addition to the power itself. For this 

purpose, several methods are used in the 

literature: 

PV power forecasting as a time series: this method 

predicts future power values from past values. It 

has the advantage of being very simple to 

implement but has the disadvantage of not directly 

considering the meteorological parameters of the 

site. 

PV power prediction from meteorological data 

and power readings. The contribution of 

meteorological parameters makes the model more 

complex but presents better results as shown in 

[15,18,34,35]. 

The input parameters of these models are 

generally a performance criterion, and a 

compromise must be found between the 

complexity of the model, the size of the input 

data, and the performance. Moreover, for the 

model to be usable for forecasting, all input 

parameters must be easily measurable in real time. 

Therefore, it is necessary to find adequate 

forecasting techniques that use the least number of 

measurable parameters possible without altering 

the performance of the model. We, therefore, 

propose in this paper a multi-step PV power 

forecasting technique combining a parameter 

reduction technique, a time series forecasting 

technique and regression. 

The article is organized as what follows. The 

methods and the material are presented in Section 

2. In Section 3, the results obtained and the 

discussion are presented. In the last section, the 

conclusions of the study are presented. 

 

2. Methods 

As shown in the research flowchart in figure 1, the 

methodology used starts with the identification of 

the parameters influencing the variability of 

photovoltaic power. Once these parameters have 

been identified, the data related to them is 

acquired or downloaded from a meteorological 

database. This is followed by data processing to 

ensure that the models to be developed fully and 

hopefully understand the information we present 

to them. After data processing, the number of 

parameters is reduced by retaining only those that 

are highly correlated with PV power. Once the 

study parameters have been selected, the hyper-

parameters of the models are optimized in order to 

obtain ones adapted to our study case. Then the 

models are developed (training, validation, and 

testing). Once the models have been developed, 

the parameters that have contributed most to their 

formation are retained, and the models are then re-

trained with these parameters to check that their 

performance has not been impaired. 
 

 
 

Figure 1. Research flowchart. 
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2.1. Input parameters for PV power forecasting  

The inputs to forecasting models have a direct 

influence on forecasting accuracy; it is a key 

factor in determining model performance. In 

general, careless selection of inputs can lead to 

forecasting errors that increase lead time, cost, 

and computational complexity. In the literature, 

several weather parameters have been identified 

as affecting the power output of a PV system. The 

use of meteorological variables is particularly 

useful when the data is irregular as it mitigates the 

effect of irregularity on the forecasting 

performance of the model. For example, in [14], 

Zhang et al. used only the historical PV power 

data as input to forecast the regular component, 

while for the irregular component, the historical 

PV power data in addition to solar radiation 

intensity and air temperature are input to generate 

the forecasting. According to [36], the variables 

that are strongly positively correlated with PV 

power output are solar irradiance, air temperature, 

and dew point, while relative humidity and cloud 

type have a rather negative correlation. In [31], 

the four most important features for forecasting 

global horizontal irradiance according to Pearson's 

correlation values are temperature, clear sky 

index, relative humidity, and time of day, while 

pressure, wind speed, and direction are less 

important. 

In general, the most common meteorological 

parameters for PV power forecasting are 

irradiance (direct, diffuse, reflected), ambient 

temperature, relative humidity, wind speed, sky 

clarity index, sun position, and dew point in 

addition to the power itself. It should be 

remembered that our objective is to develop an 

efficient PV power prediction model based on as 

few easily measurable parameters as possible. For 

this purpose, we have chosen the most commonly 

used and measurable parameters: irradiation, 

ambient temperature, wind speed, and sun 

position or hours of the day. 

 

2.2. Forecasting technique  

In order to achieve the objective, the proposed 

forecasting technique is presented in figure 2. It 

combines a time series forecasting model to 

forecast for a given horizon h, the input 

meteorological parameters, and a regression 

model to estimate for each step of the forecast 

horizon the PV power.  

Indeed, there are very powerful regression models 

but they are generally developed to perform one-

step forecasts. The time series forecasting model 

is, therefore, used here to extend the number of 

forecasting steps, while taking advantage of the 

performance of regression models. 
 

 
 

Figure 2. Multi-step ahead forecasting concept 

implemented. 
 

For the meteorological parameter forecasting, we 

opted for deep learning models because of their 

ability to learn large amounts of data. In the 

literature, several deep learning models are 

encountered in weather time series forecasting 

tasks: the CNN (Convolutional Neural Network) 

model [8, 9], the LSTM (Long Short-Term 

Memory) model [10-13], [22-27], [34], the GRU 

(Gated Recurrent Unit) model [24, 37] or the 

DBN (Deep Belief Network) model [28]. 

Similarly, for regression tasks for PV power 

prediction, the authors have made use of several 

models in the literature including the random 

forest [38-40], decision trees [40-42], XGBoost 

(eXtreme Gradient Boosting) [40], [43-47], neural 

networks [48-52]. 

Based on various research results from the 

literature, we select for this study the LSTM and 

CNN models for forecasting the input 

meteorological parameters. In one of our works 

[40] entitled "comparative study of decision tree, 

random forest, and XGBoost performance in 

forecasting the power output of a photo-voltaic 

system", we performed a comparative study of 

three models for forecasting the power output of a 

photovoltaic system based on meteorological data 

such as solar irradiance, air temperature at 2 m 

from the ground, wind speed and sun position. We 

concluded that the best performing prediction 

model is the one based on eXtreme Gradient 

Boosting (XGBoost). Therefore, we retain the 

XGBoost model for the regression model in this 

study. 

 

2.3. Data acquisition and processing  

 

2.3.1. Data acquisition and parameters  

Once the influence parameters have been selected, 

they must be acquired over a substantial study 

period and then processed. The data we used for 

the forecasting concept application was taken for 

the city of Abomey-Calavi located in the South of 
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Benin. Their main characteristics are presented 

below: 

➢ Geographic location of the site:  

• Latitude : 6.4842 

• Longitude : 2.3521 
 

➢ Period: January 1st 2005 to December 31st 

2020 
 

➢ Database: PVGIS [53] 
 

➢ Weather parameters and PV powers:  

• Direct Irradiation (W/m2); 

• Wind speed at 10 m from the ground 

(m/s); 

• Ambient temperature at 2 m from the 

ground (°C); 

• Position of the sun (°); 

• Measured power from a 1 kW peak 

panel (W); 
 

➢ PV Slope: 10°. 
 

➢ Azimuth: 22°. 
 

➢ Nominal power of the PV system (c-Si) 

(kWp): 1.0 
 

➢ System losses (%): 14.0 

2.3.2. Inspect and clean up outliers  

It is important to eliminate all outliers and to 

complete those that are not available in the 

database, perhaps by default. Here, we can use 

statistical calculation methods such as mean, 

standard deviation, maximum, minimum to get an 

idea of a probable problem. We can also represent 

the data on time intervals to observe probable 

anomalies. Regarding missing data, there are 

several techniques applied depending on the 

importance and size of the missing data. The 

disadvantage of these approaches is that one can 

only interpolate those variables that have well 

distributed missing values. Interpolation gives 

very bad results when the gap of missing values is 

high. These data can also be regressed with a 

correlated variable. But when none of these 

methods seems to be efficient, we can keep these 

outliers and use an adequate model. 

 

2.3.3. Feature creation  

Before building a forecasting model, it is 

important to understand the data and to ensure that 

the model is given correctly formatted data and 

that it will learn what it wants to learn. As shown 

in figure 1, the first forecasting step in this work is 

the forecasting of the input data as time series. 

The data exploited here (solar irradiation, 

temperature, wind speed ...), are time series and it 

is important that they have or are given certain 

stochastic characteristics before exploiting them. 

In particular, they must be stationary, i.e. their 

statistics must not depend on time. In addition to 

the stationarity, it is necessary to be able to 

inculcate the notions of time in the model. Since it 

is weather data, it has a clear daily and annual 

periodicity. There are many ways to handle 

periodicity. We can obtain usable signals by using 

sine and cosine transforms as in equations (1) and 

(2) to derive new inputs for our dataset. 
 

𝒙𝒔𝒊𝒏 = 𝐬𝐢𝐧 (𝒕 ∗ (
𝟐 ∗ 𝝅

𝑻
)) (1) 

  

𝒙𝒄𝒐𝒔 = 𝐜𝐨𝐬 (𝒕 ∗ (
𝟐 ∗ 𝝅

𝑻
)) (2) 

 

where 𝑡 is the time in second, 𝑥𝑠𝑖𝑛, 𝑥𝑐𝑜𝑠, the new 

variables added to the dataset and 𝑇 a significant 

period in the time series. 

When no information is known in advance about 

the periodicity of the series, it is possible to 

determine which frequencies are important by 

extracting features with the fast Fourier transform. 

Adding these patterns allows the model to access 

the characteristics of the most important 

frequencies. 

 

2.3.4. Dataset splitting  

We divide the dataset into a training-set and a 

test-set. The training set is the fraction of the 

dataset we use to train the models, and the test set 

is the one we use to evaluate the performance of 

our models. Thus we used 70% of the data for 

training and the remaining 30% for testing. 

 

2.3.5. Feature scaling  

In most cases, we are working with datasets 

whose features are not on the same scale. Some 

features often have huge values, and others have 

small values. Thus it is better to scale them to the 

same scale. There are basically two ways to do 

this: standardization and normalization. In our 

work we have exploited normalization which 

consists in scaling the data so that they are 

bounded between [𝑎, 𝑏]. The 𝑚𝑎𝑥(𝑥) will be 

equal to 𝑏 and the 𝑚𝑖𝑛(𝑥) will be equal to 𝑎. It 

consists in subtracting, for each variable, the 

minimum value and dividing the result by the 

maximum deviation encountered: 

 

𝐱𝐧𝐨𝐫𝐦 = 𝐚 +
(𝐱 −𝐦𝐢𝐧(𝐱))(𝐛 − 𝐚)

𝐦𝐚𝐱(𝐱) −𝐦𝐢𝐧(𝐱)
 (3) 
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2.4. Xgboost feature importance and selection  

In order to reduce the number of input parameters, 

reduction and selection techniques are used. For 

this study, we have essentially based ourselves on 

two methods of calculation which are: 

• Feature importance built-in the Xgboost 

algorithm  

• Feature importance computed with SHAP 

value  

 

2.4.1. Feature importance built-in the Xgboost 

algorithm  

The XGBoost model was developed in Python 

with version 1.3.3 of the XGBoost library. This 

library has the feature_importances_attribute, 

which is used here. The importance matrix is 

presented as a table with the first column 

containing the names of all the features effectively 

used in the boosted trees and in the other columns 

the resulting "importance" values calculated with 

different importance metrics. The different 

metrics available are [54]: 

• the gain that implies the relative contribution 

of the corresponding feature to the model, 

calculated by taking the contribution of each 

feature for each tree in the model. A higher 

value of this metric relative to another feature 

implies that it is more important in the 

prediction; 

• the coverage metric, which represents the 

relative number of observations related to each 

feature; 

• Frequency (R)/weight, which is the 

percentage representing the relative number of 

times a particular feature appears in the model 

trees. 

 

2.4.2. Feature importance computed with 

SHAP value  

A second method for calculating the importance 

of features in Xgboost that we have exploited is 

the use of the Python’s SHAP package. It is 

model-independent and uses shapley values from 

game theory to estimate the contribution of each 

feature to the prediction. 

 

2.5. Multi-steps ahead weather parameters 

forecasting as time series  

Once the number of parameters was reduced and 

scaled, we moved on to the forecasting of the 

weather parameters selected for a h horizon. To 

do so, we tested two models of time series 

forecasting: convolutional neural networks (CNN) 

and long short-term memory (LSTM). Figure 3 

presents the forecasting concept. 
 

 
 

Figure 3. Multi-step ahead time series forecasting. 
 

The two tested models (CNN and LSTM) were 

trained with TensorFlow 2.8.0 under Python 3.9.7. 

In order to find the optimal parameters for each 

model, we exploit the KerasTuner library, which 

is a scalable and easy to use hyper-parameter 

optimization framework that solves 

hyperparameter search problems. 

The parameters used for the training of the CNN 

are: 

• Input size: 72 

• Label width: ranged from 24 to 72 in steps of 

24. 

• Filters: ranged from 64 to 320 in steps of 64. 

• Units: ranged from 500 to 1000 in steps of 100. 

• Learning rate: {10-2, 10-3, 10-4}. 
 

The parameters used for the training of the LSTM 

are: 

• Input size: 72. 

• Label width: ranged from 24 to 72 in steps of 

24. 

• Units: ranged from 500 to 1000 in steps of 100. 

• Learning rate: {10-2, 10-3, 10-4}. 

 

2.6. Multi-steps ahead PV power forecasting  

Once the weather parameters are forecasted for an 

h-horizon, they can now be used to make the PV 

power forecast using the XGBoost model, as 

shown in figure 4. 
 

 
 

Figure 4. PV Power forecasting with XGBoost model. 
 

The parameters of the XGBoost model are given 

below in table 1. This model is trained with the 

XGBRegressor library under Python. 
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Table 1. XGBoost model parameters. 
 

Parameters Values 

base_score None 

booster gbtree 
colsample_bylevel None 

colsample_bynode None 

colsample_bytree None 
enable_categorical False 

gamma None 
gpu_id None 

importance_type None 

interaction_constraints None 
learning_rate 0.01 

max_delta_step None 

max_depth 100 
min_child_weight None 

verbosity None 

missing nan 
monotone_constraints None 

n_estimators 500 

n_jobs None 
num_parallel_tree None 

objective 'reg:linear 

predictor None 
random_state None 

reg_alpha None 

reg_lambda None 
scale_pos_weight None 

subsample None 

tree_method None 
validate_parameters None 

 

2.7. Experimental validation  

Once the two models were trained, an 

experimental validation of the predicted 

meteorological parameters was carried out by 

comparing them to values measured for the same 

moments of the day on site. We performed four 

tests for different days. To do this we installed a 

weather station capable of measuring direct 

irradiation, ambient temperature and wind speed. 

The irradiation, temperature and wind speed 

sensors provided by this station are shown in 

Figures 5, 6 and 7 respectively and their 

fundamental characteristics are presented in tables 

2, 3, and 4, respectively. 
 

 
 

Figure 5. Solar irradiance sensor RK200-04 [55]. 
 

 
 

Figure 6. Atmospheric RTD temperature, humidity, & 

pressure sensor RK330-01B [56]. 

 

 
 

Figure 7. Plastic wind speed sensor wind anemometer 

RK100-02 [57]. 
 

Table 2. RK04-200 specifications [55]. 
 

Item Specifications 

Spectral range 300～1100 nm 

Range 0-1500 W/m2 

Resolution 1 W/m2 

Output 0-5 V,4-20 mA, RS485 

Response time ≤5 s 

Cosine correction ≤±10% (solar elevation angle = 10) 

Non-linear ≤±3% 

Temperature effect ±0.08%/℃ 

Stability ≤±2%/year 

Operating temperature -40 °C - +80 °C 

Ingress protection IP65 

 
Table 3. RK330-01B specifications [56]. 

 

Item Specifications 

Temperature range -40-60 °C 

Resolution 0.1 °C 

Accuracy ±0.1 °C 

Output 4-20 mA, 0-5 V, 0-10 V, 

RS485(MODBUS), IIC 

Operating temperature -40 °C - +80 °C 

Ingress protection IP65 

 
Table 4. RK330-01B specifications [57]. 

 

Item Specifications 

Speed range 0 – 45 m/s 

Resolution 0.1 m/s 

Limit wind speed 50 m/s 

Accuracy ±(0.3+0.03V) m/s; (V is the current 

wind speed) 

Starting threshold <0.5 m/s 

Operating temperature -40 °C - +50 °C 

Ingress Protection IP65 

 

3. Results and discussion  

 

3.1. Data exploration  

In order to make sure that there are no anomalies 

in the dataset, a very simple way to do it is to 

check the main characteristics of each variable. As 

can be seen in figure 8 where P, T2m, H_sun, 

WS10m, and G are, respectively, the panel power, 

the temperature at 2 m from the ground, the sun 

position, the wind speed at 10 m from the ground 

and the direct irradiation, the minimum and 

maximum values, the averages, the standard 

deviations show that there are no clear anomalies. 



D. Kossoko Babatoundé Audace, et al./ Renewable Energy Research and Applications, Vol. 5, No 2, 2024, 229-241 
 

235 

 

 

 
 

Figure 8. Dataset statistics. 
 

3.2. Feature importance and selection  

The histogram presented in figure 9 shows the 

participation of each variable in the formation of 

the XGBoost model obtained with the feature 

Importance built-in the XGboost algorithm. 
 

 
 

Figure 9. Feature importance. 
 

It can be noted that the irradiation alone 

contributes to a very large extent to the formation 

of the model. We thus retain it for the rest of the 

work. 
 

3.3. Feature creation  

Based on the fast Fourier transform, we can 

highlight the most important frequencies of a time 

series, here the irradiation in our case. 
 

 
 

Figure 10. Irradiation fast Fourier transform. 
 

As we can see in figure 10, in addition to the 

known daily and annual cycles for irradiation we 

also note some for the half day, third day and 

quarter day, which are as important as the annual 

cycle. As a result, we keep the daily, annual, half-

day, third-day and quarter-day cycles for the 

creation of new variables. This gives the model 

access to the most important frequency 

characteristics. 

 

3.4. Feature scaling  

We have performed here the normalization to an 

interval [0; 1] by exploiting equation (3). We 

stress that the normalization parameters are 

determined with the train set and then applied to 

the test set. Figure 11 now shows the header of 

our dataset. 
 

 
 

Figure 11. Dataset presentation after normalization and new features creation. 
 

3.5. Performance of trained models  

Table 5 summarizes the performance of the 

trained LSTM models as well as the optimum 

parameters for which this performance was 

obtained. 

 

We can note that the best performing model 

among the LSTM models is model 1 for a 24 h 

forecast. 
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Table 5. Summary of LSTM trained model performance. 
 

 Model 1 Model 2 Model 3 

Input width 72 72 72 

Label width 24 48 72 
Units 800 700 500 

Learning rate 0.001 0.001 0.01 

Test RMSE 

(Root mean 

square error) 

3.66 W/m2 3.85 W/m2 3.88 W/m2 

 

Table 6 summarizes the performance of the 

trained CNN models as well as the optimum 

parameters for which this performance was 

obtained. 
 

Table 6. Summary of CNN trained model performance. 
 

 Model 1 Model 2 Model 3 

Input width 72 72 72 

Label width 24 48 72 

Units 700 500 600 

Filters 192 256 256 

Learning rate 0.001 0.01 0.01 

Test RMSE (root 

mean square 

error) 

3.94 W/m2 3.95 W/m2 4.007 W/m2 

 

We can note that the best performing model 

among the CNN models is model 2 for a 48 h 

forecast. 

For the same forecasting range, the LSTM models 

perform better than the CNN models. The best 

performing models are those for which a 24-hour 

forecast has been made. Therefore, we retain the 

LSTM model with 24 hours of forecast output. 

Figure 12 shows the prediction results of the 

selected model on three portions taken randomly 

from the Test set. 
 

 
 

Figure 12. Forecasting results of the selected model. 
 

3.6. Experimental validation  

In order to test the effectiveness of the selected 

LSTM model for irradiation prediction, we 

performed on-site irradiation measurements from 

February 13, 2022 to February 28, 2022. Four 

different tests were performed as shown in table 7. 

For each test it is specified the three days (72 h) 

for which the data was used as input, the fourth 

day (24h) following for which the data are 

forecasted, the weather condition of the fourth 

day. 
 

Table 7. Test day details and specifications. 
 

 Input days Output day 
Weather 

conditions 

T
e
st

 

1
 

February 13, 14, 15 February 16 Sunny day 

T
e
st

 

2
 

February 16, 17, 18 February 19 Sunny day 

T
e
st

 

3
 

February 20, 21, 22 February 23 
Partly cloudy 

sky 

T
e
st

 

4
 

February 24, 25, 26 February 27 
Partly cloudy 

sky 

 

Figure 13 shows the data collected over the test 

period. 
 

 
Figure 13. Irradiation data recorded from February 13 to 

28, 2022. 
 

Figures 14, 15, 16, and 17 show, respectively, for 

the days of February 16, 19, 23, and 27, 2022 the 

measured irradiations and the predicted 

irradiations. 
 

 
Figure 14. Measured and predicted irradiations for 16 

February 2022. 
 

 
Figure 15. Measured and predicted irradiations for 19 

February 2022. 
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Figure 16. Measured and predicted irradiations for 23 

February 2022. 
 

 
Figure 17. Measured and predicted irradiations for 27 

February 2022. 
 

Table 8 shows the root mean square errors 

(RMSE) as well as the regression coefficients (R) 

for the four trials. 
 

Table 8. Forecast performance for the four days of testing. 
 

 RMSE(W/m2) R 

Forecast for February 16, 

2022. 

54.2 0.97 

Forecast for February 19, 

2022. 

42.9 0.98 

Forecast for February 23, 

2022. 

35.3 0.98 

Forecast for February 27, 

2022. 

76.3 0.93 

 

We can note that globally the predicted 

irradiations are quite close to those measured, 

which is confirmed by the root mean square errors 

and regression coefficients. Nevertheless, we can 

note that the largest deviations are obtained 

around noon and when the sky is cloudy as in the 

day of February 27. 

 

3.7. PV power estimation with XGBoost model  

Table 9 shows the training performance of the 

XGBoost model with irradiation, wind speed, sun 

position, temperature as input, and then with 

irradiation alone as input. 

From this table, we can notice that the 

performance of the model with only the input 

irradiation remains quite good although it has 

decreased. Figures 18 and 19 show some forecasts 

made with the two models. 

 
 

Table 9. Test performance of the XGBoost model for the 

two tasks. 
 

 Test RMSE (W) Test R 

XGBoost model with 

irradiation, wind speed, sun 

position, temperature as input 

 

1.58 0.999998 

XGBoost model with 

irradiation as input 
1.72 0.992129 

 

 
 

Figure 18. Some power values predicted with the 

XGBoost with irradiation, wind speed, sun position, and 

temperature as input. 
 

 
 

Figure 19. Some power values predicted with the 

XGBoost with irradiation as input. 
 

Table 10 shows the comparison results of the 

developed forecasting technique with two 

forecasting techniques directly from the LSTM 

and CNN models with direct irradiation and PV 

power as inputs for past time points and PV power 

as output for future time points. The same dataset 

was used. 
 

Table 10. Forecasting performance of LSTM-XGBoost, 

LSTM, and CNN models for PV power forecasting. 
 

 Test RMSE (W) Test R 

LSTM-XGBoost model 1.72 0.9921 

CNN model 2.15 0.96 

LSTM model 1.82 0.9934 

 

This comparison table shows us that the 

developed LSTM-XGBoost model commits 
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globally less error than the LSTM and CNN 

models. Nevertheless, it should be noted that the 

LSTM model has a better coefficient of 

determination than the LSTM-XGBoost and CNN 

models: it would therefore produce more forecasts 

close to the true values but remains globally less 

accurate than the LSTM-XGBoost model. 

The XGBoost model with only the irradiance as 

input was then used to estimate the PV power for 

the four days of testing with the irradiance 

predicted with the LSTM model as input. The 

prediction results are shown in figure 20. 
 

 
Figure 20. PV power forecast for the four test days. 

 

4. Conclusion  

The results of this work have shown that it is 

possible to extend the forecasting horizon of the 

XGBoost model by combining it with a time 

series forecasting model such as LSTM (1 h to 24 

h) with good performance. Nevertheless, it should 

be noted that the forecast performance is biased 

towards noon when the sky is cloudy. This type of 

forecast can be performed anywhere by simply 

measuring the irradiance, but requires a history of 

photovoltaic power to drive the model. The 

proposed method, compared to most models 

found in the literature, uses fewer input 

parameters (only direct irradiation), which would 

facilitate its deployment at lower cost. The 

comparison of the proposed model with the 

LSTM and CNN models which are two of the 

most used models in PV power forecasting 

showed that the LSTM-XGBoost model was 

better in terms of accuracy (an RMSE of 1.72 W 

against 2.15 W for the CNN and 1.82 W for the 

LSTM). Nevertheless, it should also be noted that 

the developed LSTM-XGBoost model has a more 

complex architecture than the LSTM and CNN 

models used alone, which could increase its 

computation time. Furthermore, the LSTM-

XGBoost model compared to the LSTM and CNN 

models used alone showed a lower regression 

coefficient than the LSTM (0.9921 versus 

0.9934). 

 

5. List of abbreviations  
CNN Convolutional Neural Network 

GRU Gated Recurrent Unit 

LSTM Long Short-Term Memory 

R Regression Coefficient 

RES Renewable Energy Sources 

RMSE Root Mean Square Error 

PV Photo-voltaic 

SHAP SHapley Additive exPlanations 

XGBOOST eXtreme Gradient Boosting 
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