@article { author = {Rostami, M. and Farajollahi, A.H. and Marefati, M. and Fili, R. and Bagherpor, F.}, title = {A comparative Analysis and Optimization of two Supersonic Hybrid Solid Oxide Fuel Cell and Turbine-less Jet Engine Propulsion Systems for Unmanned Aerial Vehicles}, journal = {Renewable Energy Research and Applications}, volume = {3}, number = {2}, pages = {237-253}, year = {2022}, publisher = {Shahrood University of Technology}, issn = {2717-252X}, eissn = {2676-7430}, doi = {10.22044/rera.2021.11173.1076}, abstract = {The propulsion system of an Unmanned Aerial Vehicle (UAV) plays an essential role in its performance, stability and flight endurance. In this study, two types of propulsion systems for UAV (differentiated based on fuel type) are studied to determine their characteristics and advantages. These proposed propulsion systems are using a solid oxide fuel cell (SOFC) to generate the heat required for the operation of the turbine and generating thrust. To achieve the best operating condition, a multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) in MATLAB is used to decide key design parameters. For reaching the best conditions where the acceptable thrust is accompanied by reasonable flight duration, the TOPSIS decision-making method was considered. Results indicated that the efficiency and generated power of the propulsion system will increase by higher flight altitude or compressor pressure ratio. Also, due to the recirculation of fuel in the SOFC’s anode, the higher efficiency is observed in comparison when hydrogen is used; since anode-recirculation causes higher fuel utilization. The optimization result shows that the efficiency and fuel consumption for the hydrogen-fueled system is 48.7% and 0.0024g/s, respectively, and 67.9% and 0.0066kg/s for methane-fueled engine. It was also found that, maximum efficiency for both hydrogen- and methane-fueled systems are available with the stack temperature of 1025 K; however maximum thrust for these systems is at the stack temperature of 1075 K. In addition, increasing fuel rate of the SOFC power unit helps the process of generating extra power and thrust for UAVs.}, keywords = {UAV,SOFC Fuel Cell,Turbine-Less Jet Engine,Supersonic,Multi-objective optimization}, url = {https://rera.shahroodut.ac.ir/article_2349.html}, eprint = {https://rera.shahroodut.ac.ir/article_2349_95b0926b7b8e68eda8c890f0087dc0a1.pdf} }