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Abstract 

Multi-Megawatt wind turbines have long, slender, and heavy blades that can undergo extreme wind loadings. 

The aero-elastic stability of wind turbine blades is of great importance in both the power production and the 

load carrying capacity of structure. This paper investigates the aero-elastic stability of wind turbine blades 

modeled as thin-walled composite box beam utilizing unsteady incompressible aerodynamics. The structural 

model incorporates a number of non-classical effects such as the transverse shear, warping inhibition, non-

uniform torsional model, and rotary inertia. The unsteady incompressible aerodynamics based on the 

Wagner’s function is used in order to determine the aerodynamic loads. The governing differential equations 

of motion are obtained using the Hamilton’s principle, and solved using the extended Galerkin’s method. 

The results obtained are related to clarification of the effects of angular velocity and wind speed on the aero-

elastic instability boundaries of the thin-walled composite beams. The results are expected to be useful 

toward obtaining better predictions of the aero-elastic behavior of composite rotating blades. 

Keywords: Wind Turbine Blade, Aero-elasticity, Unsteady Aerodynamic, Thin-Walled Composite Beam, 
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1. Introduction

Aero-elasticity as the interaction between the 

inertial, elastic, and aerodynamic forces can have 

a significant effect on the wind turbine stability 

and life time. There exist a large amount of 

research works on the topic of wind turbine blade 

aero-elasticity. Wang et al. [1] have represented a 

detailed review on the aero-elastic modeling of 

wind turbine blades. A Thin-Walled Beam (TWB) 

is a slender structural element whose distinctive 

geometric dimensions are all of different orders of 

magnitude: its thickness is small compared to the 

cross-sectional dimensions, while its length 

greatly exceeds the dimensions of its cross-

section. The theory of composite TWB was 

founded at first by Rehfield [2]. The state of the 

art in composite TWB was reviewed in a 

monograph by Librescu and Song [3]. Since the 

aircraft wing design is primarily based on the 

principle of TWBs, it is desirable to investigate 

the aero-elastic instability and aero-elastic 

response directly within the framework of thin-

walled beams. To the best of the authors’ 

knowledge, investigation of the flutter instability 

and dynamic aero-elastic response of advanced 

aircraft wings modeled as anisotropic thin-walled 

beams in subsonic flow appears to be rather scarce 

in the open literature. Qin and Librescu [4] and 

Qin [5] have investigated the dynamic aero-elastic 

response of aircraft wings modeled as anisotropic 

thin-walled beams exposed to gust and blast loads. 

the solution of the aero-elastic system of 

governing equations requires a state-space 

description. Thus in the mentioned works, the 

unsteady aerodynamic loads are also converted 

into a state-space form. Shadmehri et al. [6] have 

extend the aero-elastic model to the case of aero-

elastic analysis of wings with distance between 

the line of aerodynamic centers and the elastic 

axes of the wing. 

In this work, which is an extension of the work 

reported in [6], an analytical model is developed 

in order to study the aero-elastic behavior of pre-

twisted anisotropic rotating TWB. Based on the 

quasi polynomial approximation of the Wagner’s 

function, the state space form of unsteady 

aerodynamics in time domain will be obtained, 

and then the Extended Galerkin Method (EGM) 

for spatial semi discritization will be applied to 

the governing aero-elastic equations. A set of 

numerical results is presented, and in addition, 

comparisons with a number of results in the 

literature are presented, and excellent agreements 
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are reported. The results obtained are expected to 

be useful toward obtaining better predictions of 

the aero-elastic instabilities of pre-twisted 

anisotropic rotating TWBs. 

 

2. Equations of motion 

 

2.1. Structural model  
A pre-twisted composite TWB with length L, 

width c, height b, thickness h, and local pre-twist 

angle β(z) was considered, as shown in Figure 1. 

Besides the coordinates (x,y,z), the local 

coordinates (xp, yp, zp) were defined; xp and yp are 

the principal axes of the pre-twisted box beam 

cross-section. The z-axis was located so as to 

coincide with the locus of the symmetrical point 

of the box beam’s cross-section along the beam 

span. The position vector R of a point of deformed 

beam, measured from the edge of the beam, could 

be expressed as: 
 

𝐑 = 𝐫 + 𝚫, 𝐫 = 𝐱 𝐢⃗ + 𝐲 𝐣⃗ + 𝐳 𝐤⃗ 
(1)  

𝐑𝟎 = 𝐑𝟎 𝐤⃗, 𝚫 = 𝐮 𝐢⃗ + 𝐯 𝐣⃗ + 𝐰 𝐤⃗ 
 

 
Figure 1. Structural model of a rotating pre-twisted TWB. 

 

The displacement field is: 
 

𝐮 = 𝐮𝟎(𝐳, 𝐭) − 𝐲𝛟(𝐳, 𝐭), 𝐯 = 𝐯𝟎(𝐳, 𝐭) + 𝐱𝛟(𝐳, 𝐭) 

(2) 
 

𝐰 = 𝐰_𝟎 (𝐳, 𝐭) + (𝐲 − 𝐧 𝐝𝐱/𝐝𝐬) 𝛉_𝐱 (𝐳, 𝐭) + (𝐱 +

𝐧 𝐝𝐲/𝐝𝐬) 𝛉_𝐲 (𝐳, 𝐭) − 𝛟′(𝐳, 𝐭)(𝐅𝐰 + 𝐧𝐚(𝐬))  
 

where u, v, and w are the mid-surface 

displacements and θx, θy, φ are the section normal 

vector rotations about the x-, y-, and z-directions, 

respectively; a(s), r(s), and primary warping 

function (Fw) are fully defined in [5]. In summary, 

substituting (2) in the linear strain-displacement 

relations and using the Hamilton’s principle leads 

to the Euler-Lagrange equations and a set of 

natural and essential boundary conditions [6]. 

Using the constitutive relations for a general 

orthotropic material and assuming the symmetric 

angle-ply configuration, the Navier equations of 

motion could be expressed in terms of the 

displacement components, where there exists 

coupling between the vertical bending (δv), twist 

(δφ), and transverse shear (δθx) equations of 

motion. The effects of pre-twist on the bending 

motions are applied using the simple 

transformation rules in order to transform the 

variables in local p-coordinate to the global 

coordinate [7] but pre-twist affects the torsion 

modes in different manners [8]. 

 

2.2. Aerodynamic model  

By definition, an indicial function is the response 

to a disturbance that is applied instantaneously at 

time zero, and held constant thereafter, i.e. a 

disturbance is given by a step function. In the 

analysis of the flow about airfoil, if the indicial 

response to each kind of disturbances is known, 

then the unsteady loads to arbitrary changes in 

amount of any disturbances could be obtained 

through the superposition of indicial aerodynamic 

response using the Duhamel’s integral. Wagner 

has obtained a solution for the indicial lift on a 

thin-airfoil undergoing a step change in the angle 

of attack in incompressible flow. In order to 

express the lift and aerodynamic moment in the 

state-space form, the quasi-polynomial 

approximation of the Wagner’s function is used 

[9]. Finally, after amusing calculations, the 

aerodynamic loads could be expressed in the state 

space form [5].  
 

3. Solution methodology 

In order to convert the free vibration problem to 

an eigenvalue problem, the unknown variables 

F(z,t) are written as: 
 

𝐅(𝐳, 𝐭) = 𝛙
᷉

𝐅
(𝐳)𝐪(𝐭) (3) 

 

Where ψ
F

(z) is the suitable assumed modes 

required to fulfill the geometric boundary 

conditions, and q(t) is the vectors of generalized 

coordinates. Substituting (3) in the weak form of 

equations of motion, they are reduced to the 

following system of equations: 
 

[𝐌]{𝐪̈} + [𝐂]{𝐪̇} + [𝐊]{𝐪} = {𝟎} (4) 
 

Where [M], [C], and [K] are the mass, damping, 

and stiffness matrices of the aero-elastic system, 

respectively. Re-writing (4) in the state space 

form and representing q(t) in the form, q(t) =
q̅exp(λt) leads to the eigenvalue form. 

 

4. Numerical results  

 

4.1. Validation  
In order to verify the accuracy of the implemented 

structural model, a shearable cantilever pre-

twisted beam is considered. In Table 1, two first 
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dimensionless natural frequencies (
2

=ω2b1L4/a33) of beam are compared with those 

obtained from [18]. 
 

Table 1. Comparison between natural frequencies of pre-

twisted shearable beam of the present work and [18]. 
 

 [18] Present work 

𝜔̅1 3.516 3.515 

𝜔̅2 22.036 22.032 

a22 = 2869.7 N.m2, a33 = 57393 N.m2, b1 = 34.47 kg/m,  
L = 3.048 m, β = 90 

 

In order to verify the accuracy of the current 

solution methodology, the real and imaginary 

parts of the aero-elastic system for the wing model 

of Figure 2 with the parameters listed in Table 2 

obtained in this work are compared with those 

obtained via the P-method. Figure 3(a) shows the 

damping of the aero-elastic modes obtained from 

the investigated solution methodology, while 

Figure 3(b) is obtained via the P-method. Figures 

4 (a) and 4 (b) represent the variations in the 

frequencies of the aero-elastic system versus the 

free stream velocity obtained via the present and 

the P-method, respectively, which shows the 

accuracy of the solution methodology. 

 
Figure 2. A schematic description of the wing cross-

section for solution methodology verification. 
 

  
(a) P method (b) Present method 

 

Figure 3. Variation in dampings of aero-elastic system 

versus free stream velocity. 

 

  
(a) P-method (b) Present method 

 

Figure 4. Variation in the frequencies of aero-elastic 

system versus free stream velocity. 
 

Table 2. Geometric specifications and material properties 

of the wing section for solution methodology verification. 
 

 

𝑋𝑎 = 𝑒 − 𝑎 a 𝑚 (𝑘𝑔) 𝐼𝑐.𝑔 (𝑘𝑔𝑚2) 

0.4 -0.2 6.53 0.042 

𝐸𝐼 (𝑁𝑚2) 𝐺𝑗 (𝑁𝑚2) 𝐿 (𝑚) 𝐶 (𝑚) 

159 1039 1 1.83 

 

4.2. Results  
The geometric and material properties of the 

studied blade are presented in Table 3. 
 

Table 2. Material and geometric properties of 

rotating composite TWB. 
 

Material properties Geometric properties 

206.8 𝐸 1 (𝐺𝑃𝑎) 12 L(m) 

5.17 𝐸 2 = 𝐸3 (𝐺𝑃𝑎) 0.757 b (m) 

3.1 𝐺 12 = 𝐺13 (𝐺𝑃𝑎) 0.1 c (m) 

2.55 𝐺23
(𝐺𝑃𝑎) 0.03 h (m) 

1528 Density (𝑘𝑔/𝑚3) 0.9 C (m) 

0.3 Poisson’s ratio   
 

Figure 5 shows the variation in the real and 

imaginary parts of the eigenvalues of the aero-

elastic system versus wind velocity for Ω = Π/3. 

The results obtained show that the effect of wind 

velocity on the aero-elastic system is marginal. 
 

  
 

Figure 5. Variation in the real and imaginary parts of 

eigenvalues of the aero-elastic system versus wind velocity 

for 𝛀 = 𝚷/𝟑. 
 

Figure 6 shows the effects of the rotational 

velocity on the real and imaginary parts of 

eigenvalues of the aero-elastic system. 
 

  
 

Figure 6. Variation in the real and imaginary parts of 

eigenvalues of the aero-elastic system versus rotational 

velocity. 
 

The flutter boundary of the blade is near the 

rotational velocity of 83 rad/s. A close look-up of 

the frequencies of the unstable aero-elastic modes 

is shown in Figure 7. 
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Figure 7. A close look-up of the frequencies of the 

unstable aero-elastic modes. 
 

5. Conclusions 

The aero-elastic stability of a horizontal axis wind 

turbine blade was investigated. The wind turbine 

blade structure was modeled as a rotating 

composite thin-walled beam. The structural model 

consists of the in-plane and out-of-plane bending, 

torsion, shear deformation, primary and secondary 

warping, rotary inertia, and warping inertia. The 

aerodynamic loads were obtained using the 

unsteady theory of aerodynamics and with 

polynomial representation of the corresponding 

lift deficiency function. The Eigen analysis of the 

aero-elastic system leads to the instability 

boundaries of the system. According the results of 

this work, the effect of the blade’s rotational 

speed is dominant in comparison with the wind 

velocity on the occurrence of the flutter.  
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