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Abstract

This work deals with the energy hub systems in order to evaluate the sensitivity analysis of the output power
carriers in terms of the input electricity and natural gas. Unlike the recent works that have solitary
concentrated on the operational cost minimization, in this research work, not only the energy carriers of the
proposed hub are being modeled but also the sensitivity analysis of each power supplier is investigated.
Since some of the input power carriers in the hub are decreased slightly or immediately according to the
unsolicited situations, the output electrical or thermal profile may not be supplied completely. Therefore, the
network operator must make a proper decision in order to utilize the best carriers not to reduce the system
efficiency, if possible. In this regard, the objective function including the energy costs for the electrical,
thermal, and cooling demand carriers is optimized, and the best solution is extracted based on the conditional
value at risk (CAVR) of the electricity market actors using the GAMS/CPLEX software. According to the
results obtained, the higher the risk that the network operator takes, the higher the profit from the future
contracts. In the next step, the electricity price is predicted using the ARIMA approach for the next four
weeks, and the sensitivity analysis for the future of the energy hub is examined. The simulation results and
the changes in the share of energy carriers show that the importance of passive defense must be considered in
planning for the energy supply of the office buildings, and the percentage of the unsupplied energy must be
studied.

Keywords: Energy Hub, Electricity Market, Conditional Value at Risk, Optimization, Sensitivity Analysis.

1. Introduction

An energy hub system consists of some power
carriers with different performances that are
integrated together within the coherent operation
preservation. Power supplement for energy is
required in the commercial, residential, and the
industrial loads result in the development in
generation of expansion planning [1]. Since the
electrical power and natural gas with their
interaction through combined heat and power
(CHP) devices, electric heat pumps (EHPs), etc.
increase the synergy, the system efficiency will
growth up correspondingly [2]. This issue is
achieved by providing a basis to feed the demand
load within a semi-lossless energy hub system.
Inside the general hubs, regularly, there are
transformers,  power electronic  interfaces,
compressors, thermal exchangers and combined
cooling heat and power (CCHP), and some
converters, as shown in Figure. 1. Many research
works have been conducted so far on optimal
energy hub operation considering the cost

minimization. Most of them concentrate on the
CHP programing and unit commitment. The
energy hub concept or multi-carrier energy system
performance has recently been introduced by the
novel researchers [3].

The authors in [4] have provide a framework for
modeling and optimizing the systems with
multiple energy carriers. Based on the concept of
energy hub, a sustainable model for converting
and storing the multiple energy carriers such as
electricity, natural gas, hydrogen, and local heat
has been used to optimize the system. The
modeling method for using the multiple energy
carrier systems inside the buildings is based on the
concept of energy hub in [5]. This method allows
modeling of energy coupling between the energy
supply sources and the desired loads in the
combined methods. The authors in [6] have
delivered a model of an energy hub with CHP and
wind turbine and solar cell and a water
electrolyzer in order to produce hydrogen. In all
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the above references, attention to the network
requirements such as the inlet gas pressure to the
hub and bus voltage has not been considered, and
the hub has been examined and designed
independently from the network. The design and
determination of the optimal capacity of the
interconnected hubs by considering the physical
constraints in the electricity and gas networks and
environmental issues have been presented in [7].
The authors in [8] have presented a new method
for planning and developing the distribution
system production with the concept of energy hub.
The proposed algorithm divides the problem into
several sub-problems in order to minimize the
investment and operating costs, while improving
the reliability. The authors in [9] have dealt with
the long-term planning of the six-bus electricity
and natural gas network. This reference has tried
to solve the objective function through the linear
programming method by the linearizing relations.
The above articles also pay attention to the design
and long-term planning of the hub, while the
purpose of this article is to schedule the operation
of the micro-grid for the day ahead. The authors in
[10] have investigated the issues of equipment
efficiency and uncertainty of power, and price and
electrical load are included in the optimization
problem. The authors in [11] have proposed a
residential energy hub for a smart home. A
residential CHP and an electric vehicle are
included in the model, and the energy consumed
and how to convert it inside the hub. A robust
optimization method to solve the problem of
optimizing the operation of an energy hub has
been presented in [12]. In fact, in this article, the
amount of energy purchased and stored has been
optimally obtained. The authors in [13] have dealt
with the objective function, and have maximized
the profit of the owner of the energy hub by
considering the risk of uncertainties.

In the same way, the authors in [14] have
presented a new framework to solve the load flow
equations in the energy hub space. The inputs and
outputs are related together with high-order
matrices that make the problem formulation
completely non-linear so that the robust
optimization approach is hired to solve the
objective function. The authors in [15] have
presented a mathematical model of CHP
equipment in the low-scale optimization but the
operation cost does not contain the other
interchanges among the energies wasted there. In
[16], a linear programing (LP) approach has been
hired in order to minimize the operation costs in
the presence of CHP. However, no sensitivity
analysis has been figured out. An optimal problem
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formulation has been expressed in [17] in order to
minimize the operation costs of the multi-carrier
power system. The optimization problem is based
on the multi-parametric genetic algorithm (GA),
which divides the main fitness function into some
sub-problem equations. Therefore, the least
disturbances are crashed to the energy hub
system; nevertheless, no time saving for the
objective function solving has yet been presented.
The authors in [9] have presented a model to
program the wind farm in the presence of CHPs,
and then in [18], this mathematical formulation
has been completed considering the instantaneous
operation of photovoltaic (PV) system and energy
management system (EMS). In any case, no
sensitivity analysis has been obtained in both the
above-mentioned works.

The renewable energy resource) performance in
the multi-carrier energy systems is always self-
challenging. Likewise, the authors in [19] have
evaluated the economic dispatch (ED) problem in
the presence of wind turbine (WT). The
uncertainties appearing in the wind performance
will make this problem to be probabilistic ED.
This paper also tries to determine the share of
each energy carrier in order to obtain the best
controllability and visibility. In [20], the power
generated by WTs is being management with the
purpose of minimizing the objective function. The
robust optimization strategy will result in reduced
operation costs but the wind uncertainties have
not been paid attention to. In [21], the authors
have solved the energy hub optimization using the
LP approach, while the decision vectors and
control parameters have been considered as the
energy purchased and sold during a day. There
have been some efforts to investigate the EMS
and battery energy storage system (BESS) but
some restrictions on hydrogen procurement have
made these research works unfinished. The
authors in [22] have presented a new concept to
energy hub named economic valuation, which
measures the worthiness of the natural gas, heat
exchangers, and electricity price. In fact, the
electric power or the natural gas purchased form
the electricity market and heat market,
respectively, should be valuated before utilization.
Then the ED solution is achieved within ignoring
the sensitivity analysis.

The authors in [23] have proposed an energy
management framework with heat evaluation
based on the electricity purchased and consumed
in the residential loads. However, they have not
mentioned RESs. Unlike that, the others in [24]
have much paid attention to the plug-in electric
vehicle (PEV) operation with RES influences. The
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significance of this novelty is to consider the
reactive power compensation in the electric
distribution network according to the PEV travels.
PEVs have the capability to inject the reactive
power into the non-compensated nodes in order to
improve the voltage profile, as the static VAR
commentator (STATCOM) does.

In this paper, the considered energy hub includes
the electricity distribution network, natural gas,
CHP, EHP, furnace, and chiller boiler (CB) to
supply all the power demands. Therefore, the
system modeling is completely formulated with a
mathematical foundation. Then the multi-
objective function describing the operation cost
and sensitivity utility is presented in the next
section. The most useful novelty of the conducted
work is listed below:

e Sharing determination of the input energy
carriers in terms of the parameter
variations.

e The CVaR variable will impact on the ISO
optimal decision-making.

e Energy not supplied is evaluated through
the sensitivity process.

e Electricity price forecasting is considered
since it highly impresses the problem
formulation.

The nomenclature used in this paper is written
below.

Nomenclature

a Confidence level

B Trade-off number between risk and cost
Positive axillary variable based in

1 scenario

U Positive axillary variable

cop Coefficient of performance for EHP

h¢ Binary variable for EHP heat power

Ct Binary variable for EHP cooling power

w; Binary variable for CHP SU/SD cost

c&iP Total start-up cost for CHP

SUfHF Start-up cost for CHP at j™ block

c&iP Total shut-down cost

SDfHF Shut-down cost for CHP at j™ block

kgitP Binary variable for CHP commitment
yCHP Eg;&grtage of generated electrical
b Binary variable for CB commitment
Nee Efficiency of CB

Jurnace Percentage of generated thermal power
Ptf’las(i"”“t’F ) | Input natural gas power for furnace
Pcp Cooling power demand
Pcp enp Cooling power generated by EHP
Pepca Cooling power generated by CB
Pup Heat power demand
Pup gup Heat power generated by EHP
HCHP Heat power generated by CHP
[Furnace Heat power generated by furnace
Pep Electrical power demand
Pge Grid electrical power
P;;ec(CHP) :ZHP electrical power at j™ block at time
peHP Total CHP generate power
Ptgjas(CHP) CHP thermal power at j block at time t
Nrr Transformer efficiency
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2. Problem Formulation

A sample integrated electricity and gas grid is
shown in figure 1, and the equivalent energy hub
configuration under consideration of that is
represented in figure 2. As shown, the input power
carriers include the electrical energy purchased
form the electricity distribution network and
natural gas purchased from the heat grid. The
outputs contain the electrical and thermal load
demand within the cooling power that must
procure separately. The interaction energy will be
done among the electrical transformer, CHP,
EHP, furnace, and CB.

The BESS is excluded in the proposed system due
to the expensive operation cost.
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Figure 1. A typical energy hub system.

In order to evaluate the operation cost in the first step,
the mathematical formulation of all equipment should
be extracted.
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Figure 2. Block diagram of proposed energy hub.

2.1. CHP modeling

In the CHP operation, the heat power can be
estimated piecewise linear in accordance with the
efficiency and loading percentage. Since CHP can
generate  electrical and  thermal  power
instantaneously, the total electricity produced can
be calculated by (1) to (3) [5].

pCHP _ Z Z YEHP PE;S(CHP)
1

1
£ L @
Pte,jlfcl(CHP) " kE]HP < PtCiHP < Pteilec(CHP) " kE]HP (2)

KEHP — 1
2.k o
j=1

The electricity power generated from the input
natural gas was determined by ySPP. The
remaining power will be converter to the heat
demand. Eqg. (2) relies on that the CHP generated
power must be exactly between the previous one
and the next one. This power must be extracted
from one block of the CHP characteristics,

220

merely, which is proved by (3). The heat power
generated by CHP can be mathematically
formulated as follows in (4) [5].

T Ncup

CHP _ CHP gas(CHP)
HO =) D ¥R

t=1 j=1

(4)

while the turn-on and turn-off costs of that should
have been considered in (5) and (6), respectively

[6].

CE” = SUFHP » wy(1 - w,_1)

(5)

Csp" = SDF™P + we_g (1 — wy) (6)
It should be noted that a convex area for the best
performance of CHP must be considered as Figure
3 in order to confirm the relations between the
heat and the electrical power; otherwise, the
solution obtained from the optimization problem
may be wrong. Therefore, the constraints below
will be added to the objective function to
represent the CHP performance areas [6].

CHP cup _ PE"P-pg"? CHP CHP
P —Py - HSAP_ AP * (P —Py ) <0 (7)

CHP CHP
Py — P

CHP _ pCHP __
p Py HCHP _ yCHP
B C

« (PCHP _ pCHPY 5

(8)

CHP CHP
P — Py

CHP __ pCHP _
p PC HCHP _ yCHP
C D

« (PCHP — pCHPY > ¢

©)

The horizontal axis of the diagram shown in
Figure 3 determines the thermal power, and the
vertical axis represents the electrical power
generated. Equation 7 specifies all the surfaces
under the line AB. Also equation 8 and equation 9
define all the areas upper than the lines BC and
CD, correspondingly. The subscription of these
three areas represents the permissible range of the
CHP performance.

A

CHP
Convex
Region

\

H kW]

Figure 3. CHP convex region [6].
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2.2. EHP formulation

An EHP device consumes electrical energy, and
generates the cooling power or thermal power
depending on the operation mode. EHP is out of
work, while Eq. (13) satisfies the zero. The
operation principles of EHP are mathematically
formulated as follow [6]:

Pepenp + Pup enp = Prgenp X COP (10)
Piknp- e < Pupgup < PHEEnp- he (11)
P& Eup- € < Pepgup < PCFRnp- Ct (12)
c,+h <1 (13)

2.3. CB modeling

In the CB equipment, the cooling power is
generated in terms of the heat power received.
Due to its efficiency, the mathematical
formulation of the CB operation is described as
(14) [12].

Pcp,ce = be-Nce- Pup,cs (14)

2.4. Furnace modeling

In order to procure the thermal load profile
directly, the furnace is utilized. This device
receives the natural gas, and produces heat power,
which is formulated as (15) [13-14].

T Nfurnace

Furnace _ furnace gas(input)
H - Z Z ye * Pt'l

t=1 I=1

(15)

2.5. Energy storage modeling and ice-making

In this work, in order to increase the reliability of
the electric power procurement, a set of energy
storage was considered in order to improve the
grid performance. Therefore, the electricity
storage device (battery), heat storage device, and
cooling energy device (ice storage tank) were,
respectively, subjected to (16)—(18). It is worth
mentioning that the charging cooling energy
device is just the ice-making capacity, and the
discharging cooling energy is just the ice-melting
capacity. Besides, the ice-making and ice-melting
modes cannot operate simultaneously [25].

Pl 4
Eeta-;l = Eetas(l - 8es) + At <Pets,cr|es,c - = )
nes,d

0 < Pgc < UesPRE (16)
0< Pt:s,d < (1 - ues)P(;Islf::lX

Emin < Ef < Ema

221

Pis.a
Elt:s—1 = Eltls(l - 8hs) + At (Plgs,cnhs,c - >

hs,d

0< Pltls,c < uhSPllll;flcx (17)
0 < Piyg < (1 — up) PRy
Em™ < Efs < Ep™

t+1 _ gt t PCtS'd
Ecs - Ecs(1 - 8cs) + At Pcs,cncs,c -

Nesd

0 < P& < u PR (18)

0 <Piq<(—u, PRy

cs,d

EDin < Ef, < EmaX

where the indices e, h, and ¢ represent the electric
energy, heat transferring, and cooling power
exchanging in energy hub. E and P, are the
energy and the electric power used to supply the
hub, while § and u are the binary variables that
imply the turn on/off devices.

2.6. CVaR

In a perfect and competitive market, the risk plays
an important role in the quality evaluation of the
generation units. Risk measurement always
requires some powerful instrumentation to be
calculated. For example, the value at risk (VaR) is
introduced as a significant criterion, and
determines a unique value. In [15], VaR and CVar
are mathematically formulated as the following
equations.

VaR = Max{x|(profit <x) <1 — a} (19)

CVaR = Expexted{profit|profit < VaR} (20)

The confidence or reliability level («) is usually

selected to be 0.95. Therefore, the CVaR
formulation is completed within (21) [16].

T Ni
CVaR = ; B <( - Tlaz N . p(t i)) (21)
subject to:
—profiti) +{—nm(ti) <0 ; Vvi=12,..N; 22)

nti)>0 ; vi=1,2,..,N;

3. Objective Function

The optimization problem is to solve the equation
written in (23) in order to minimize the total
operation cast (OC) of the multi-carrier energy
hub system containing the cooling heat and
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power, electric heat pump, cooling boiler, furnace,
energy storage with ice-making, and risk
management of the operator decisions. Due to the
unchanging of the load profile in the hub outputs,
the only factors to be optimized will be the power
purchased and the interaction process cost.

T T
oc = Zl Tee () Pag (1) + Zl Tgas (£) . Pyas ()

+SURC.u, + SDPE. u_q + SUFMP . w,
+SD{HP wy_y

L+ B (- S IN e D D).

(23)

while the equality and non-equality constraints are
expressed in (24)—(27) [8].

3.1. Cooling demand criteria

Pcpenp + Pep,ce + Pepjice = Pep (24)

3.2. Thermal demand criteria

Pypeup + HEHP + HFUMaCe 4 Py pos = Pyp (25)

3.3. Electrical demand criteria

1
P:j (P 4 NpePpg + Pgess = Pep (26)

3.4. Non-equality constraints

,max ,min
HCHP < HCHP < HCHP i

elec(CHP)

Pelec(CHP),min < Pt,j

> < Pe_lec(CHP),max

t

HFurnace,max < HFurnace < HFurnace,min

min max
Pep.enp < Pepenr < PepEnp

(27)

PibEnp < Pupenp < Pl Eup
PEHSs < Pppss < PARes
Piies < Pupss < Pdes
PE3TeE < Pepice < PO%ice

O0<ax<l1

4. Short-term Electricity Price Forecasting

The Auto-Regressive and Integrated Moving
Average (ARIMA) time series model can be used
with the variable mean or variance values [26].
This method uses the historical data in order to
forecast the future data. The method that was
applied in this work to predict the electricity
market prices was based on [27]. If the electricity
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market prices are represented by A;, then a generic
ARIMA model is as follows:
d(B)A, = p(0)¢, (28)
where ¢(B) and ¢(0) are the back-shift
operators, and &, represents the normal white
noise. These are obtained using the Box and
Jenkins method using the auto-correlation and
partial auto-correlation functions. The historical
price data of three weeks in the electricity market
was used to forecast the electricity market prices
in the future. The auto-correlation and partial
auto-correlation functions are shown in figure 4.

Autocorrelation Function

1 T :

c
L
©
e “m“iiiiiiiii
i
: {1t
8 0
=]
<

05 | h . L I

0 100 200 300 400 500 600

» . Laq . .
S Partial Autocorrelation Function
2 1 T T T
k]
<
5 0.5
o
)
=]
<
s
£ .05 . L . . L
g 0 100 200 300 400 500 600

Lag
Figure 4. Auto-correlation and partial auto-correlation
coefficients.

Then the resulting ARIMA time series model is:

(1-0.032B,) * (1 + 0.125 B, — 0.745 By)
(1—0.245B, + 0.552 B;;) * (1 — By3)

(1 —0.142 By;) *log(A,) = (1 + 0.625 By) *
(1 —0.845 B, — 0.542 B4 + 0.985 By)

(29)

The mean absolute percentage error is calculated
in (30) so that the forecasted electricity price is
represented in figure 5. The upper band and lower
band will guarantee the prediction areas [27].
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Figure 5. Predicted electricity price.
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5. Simulation Results in Base Case

The objective function described in the previous
sections is now being minimized to obtain the best
solution through the equality and non-equality
constraints. In this case, the energy not supplied
(ENS) was calculated as zero. There are three load
profiles that should be supplied by the electricity
and natural gas energies purchased from the
upstream network: electrical demand, thermal
profile, and cooling load. The electrical demand in
the base case will be procured using CHP, EHP,
ESS, and grid power.

Similarly, the thermal profile is supplied by CHP,
furnace, and battery heating power, and the last
one, the cooling load, is supplied by CB and ice-
making power extracted from the battery
equipment. The simulation results represent these
load profile procurement in figures 6 to 8.

2000
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500 L

0

Electrical Energy (KW)

-500 | I Grid Power 1
[ cHp

[ EHP

[ Battery Discharging -
I B:ttery Charging

-1000 |

500 vy ey

0123 456 7 8 910111213 141516 17 18 19 20 2122 23 24
Time (hour)

Figure 6. Electrical demand procurement.
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Figure 7. Thermal demand procurement.
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Figure 8. Cooling demand procurement.
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Figure 6 shows that the energy purchased from the
upstream grid that will be cost-effective in the
event of a light load interval, and when the
electricity tariff increases, CHP will also
contribute to generate the electrical power. In the
peak load periods, the battery is discharged and
helps the power carriers to provide the required
demand. It is worth noting that in the times of
light load conditions, the battery is also charged
(black chart) to reduce the total cost of the
operation. In this regard, EHP takes a small share
of the power supply due to its low capacity. From
figure 7, which shows the share of energy carriers
to provide thermal demand, it can be concluded
that the furnace has the highest share in most
hours of the day, and only a small amount of
power of CHP and ESS have been used. These
interpretations are also applied to figure 8,
meaning that most of the cooling power is
provided by CB, and e ESS will only enter the
circuit during the peak hours.

6. Sensitivity Analysis

The time horizon of the simulations was
considered as 24 hours a week, and the
mathematical formulations were solved in the
GAMS platform. In the base case simulation, no
contingency happened so that the total load power
(electric, thermal, and cooling) were completely
supplied by the energy sources. In this section, the
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sensitivity analysis of the power outage of energy
sources is investigated as decreasing steeply.

6.1. CHP outage

Imagine that CHP is crashed due to the power
oscillations or an interruption in the transmission
gas lines. Thus CHP is going to be out of the
circuit with the steps 30%, 50%, and 100% so that
the electricity produced by CHP is substituted
with ESS, the grid power, and EHP. Likewise, the
gas not supplied should have been provided by the
furnace and ESS heating devices. Table 1
represents the CHP outage effects on the electrical
and thermal load procurement, which influence
the other energy sources. Figure 9 represents the
operation costs and ENS in terms of the CHP
outage. As it can be observed, the operation costs
are increasing since the CHP outage level rises as
well. ENS in all the sensitivity analysis sections
are increased, while the energy sources will be out
of the circuit, correspondingly.

Table 1. Energy surplus percentage of energy sources in
CHP outage rather than base case.

Energy
sources

CHP outage percentage
50%
1.23%

30%
1.12%

100%
1.44%

EHP

CB 1.04% 1.09% 1.13%

Furnace 1.13% 1.17% 1.26%

ESS 1.16% 1.22% 1.43%

x107

T
[l Operation Cost
I ENS

~ w
-
B B
ENS (%]

Operation Cost [$]

-
T
o

0

0 %

30 % 50 %
CHP Outage

Figure 9. Operation costs and ENS in terms of CHP
outage.

100 %

Since CHP is the largest and most expensive
equipment in the energy hub, its outage can have a
more dangerous impact on the system stability.
Figure 9 also shows that the operating costs have
increased about $5 million, and ENS has reached
about 16%, which can be a serious threat to the
system demand procurement. Therefore, paying

attention to the passive defense in energy hub
planning will be very decisive.

6.2. EHP outage

Since the EHP power source steps out of the
circuit, the other energy sources are influenced,
accordingly. Table 2 and figure 10 show the
effects of EHP outage on the surplus energy
produced and the operation costs. The ENS
computations imply the worse conditions rather
than the base case.

Table 2. Energy surplus percentage of energy sources in
EHP outage rather than base case.

Energy EHP outage percentage
sources 30% 50% 100%
CHP 1.03% 1.08% 1.14%
CB 1.01% 1.02% 1.04%
Furnace 1.06% 1.07% 1.11%
ESS 1.06% 1.08% 1.14%
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When EHP is adjusted to be out of the circuit
from the energy hub, the greatest pressure to the
supply power will be applied to ESS and the CHP
devices. This suggests that the unsupplied energy
could increase by as much as 15%, which would
result in a cost increase of approximately $3
million.

x107

[l Operation Cost
I ENS

Operation Cost [$]
~
ENS [%]

0
0 % 30 % 50 % 100 % ’
EHP Outage
Figure 10. Operation costs and ENS in terms of EHP

outage.

6.3. CB outage

The CB outage generally influences the cooling
power that should be supplied. As shown in Table
3, the CB outage causes the ESS ice-making
power to pressure to procure the cooling demand
profile. Therefore, there are some ENS increments
in this kind of energy required by the consumers.
Figure 11 represents the operation costs and ENS
in terms of the CB outage.
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Figure 11. Operation costs and ENS in terms of CB
outage.

Table 3. Energy surplus percentage of energy sources in
CB outage rather than base case.

Energy CB outage percentage

sources 30% 50% 100%
CHP 1.07% 1.09% 1.17%
EHP 1.02% 1.05% 1.06%

Furnace 1.07% 1.08% 1.16%
ESS 1.12% 1.18% 1.25%

Since CB is used to supply the cooling load
profiles, and there is not much alternative resource
for it, if it goes out of the circuit, the amount of
unsupplied energy will also increase sharply so
that it is possible that approximately 23% of the
total demand is not being supplied. Besides, the
calculations show that the total cost of the
operation and planning will increase by about $2.5
million in the case of CB outage.

6.4. Furnace outage

The furnace and CHP are the two important
equipment to supply the thermal demand. Since
the furnace is going to be out of the circuit, the
CHP and ESS heating part have to supply the
thermal power. Table 4 and figure 12 represent
the output of the furnace outage.
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Figure 12. Operation costs and ENS in terms of furnace
outage.

50 % 100 %
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Table 4. Energy surplus percentage of energy sources in
furnace outage rather than base case.

Energy Furnace outage percentage

sources 30% 50% 100%
CHP 1.13% 1.19% 1.28%
EHP 1.03% 1.06% 1.08%
CB 1.02% 1.04% 1.09%
ESS 1.13% 1.14% 1.20%

The furnace directly converts the energy received
from the natural gas to heat, and plays an
important role in supplying the thermal demand of
the system. Therefore, if the furnace outage
scenario is considered, it is possible that about
19% of the network loads will face a lack of
energy. Correspondingly, in this case study, with
the furnace outage from the energy hub circuit,
the operating and planning costs will increase by
$1.7 million, which is certainly not desirable.

6.5. ESS outage

Since the ESS equipment supplies both the
electric and thermal powers (also the cooling
power), the ESS outage will cause all devices to
procure a lack load not supplied. Therefore, Table
5 and Figure 13 represent the ESS outage and its
effect on the other energy sources, operation
costs, and ENS.

Table 5. Energy surplus percentage of energy sources in
ESS outage rather than base case.

Energy Furnace outage percentage
sources 30% 50% 100%
CHP 1.16% 1.22% 1.31%
EHP 1.09% 1.17% 1.28%
CB 1.10% 1.16% 1.29%
Furnace 1.17% 1.19% 1.30%
4 X107 i a0

Operation Cost [$]
w
ENS [%]

0
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ESS Outage

Figure 13. Operation costs and ENS in terms of ESS
outage.

50 % 100 %



M. Mahmoudian et al./ Renewable Energy Research and Applications, Vol. 3, No. 2, 2022, 217-228

Since ESS plays an important role in providing
the electrical, thermal, and cooling load profiles,
its outage can have irreparable consequences on
the system. The results shown in figure 13 show
that in this case study, the unsupplied energy will
reach about 28%, which will be more than the
other studies studied. The operating costs will also
increase by approximately $2.9 million. The
minor changes in the price are due to the small
capacity of the energy hub.

6.6. CVaR variations

In this section, it is assumed that the only factor
that influences the 1SO decisions is the
conditional value at risk. The calculations show
that the more risky the decisions made, a higher
profit will be obtained. Table 6 explains the risk
management variation in terms of the operation
costs. Furthermore, Figure 14 shows the expected
profit in terms of the risk factor increment from 0
to 5.

6
5><‘10 :

beta=5

45

351

Operation Cost [$]

25F

2 | | I |
0 2 4 6 8 10

Stansard Deviation [$] «10%
Figure 14. Expected profit in terms of risk factor
increment.

The results shown in figure 14 represent that if the
beta is reduced, the interest rate risk will increase,
and they will earn higher profits. However, it is
not without merit that the standard deviation of
the profit also increases, which indicates that with
changes in the reliability, there is a possibility of
losing profit at higher risk levels. Table 6 shows
that the lower the alpha, the lower the operating
reliability, the company, and the futures contracts,
and consequently, the higher the operating cost.
Note that increasing the operating costs does not
mean that the case study is undesirable, and will
only be interpreted as one test of the total
sensitivity analysis.

Table 6. Expected cost various risk factor variations.
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B
5 2 1 0.5 0
0.95 3.04e6 3.03e6 3.03e6 3.02e6 3.01e6
a 0.85 | 3.04e6 3.04e6 3.03e6  3.02¢6  3.01e6
0.75 3.5e6 3.04e6 3.04e6 3.02e6 3.02e6
7. Conclusion

In this work, the sensitivity analysis of the
operation scheduling in an energy hub system
based on the natural gas, electric power, and
thermal energy was investigated. The crisis
management in this multi-carrier power grid
showed that by choosing the correct share of input
power carrier, the highest efficiency and the least
cost could be achieved. The sensitivity analysis on
the energy carriers such as CHP showed that the
CHP power could be considered as the most
efficient and profitable energy source since it had
a low cost (about $3.012 million) in order to
produce the electric and thermal powers
simultaneously. The sensitivity analysis to reduce
the consumption of natural gas showed that the
operating cost would increase to about $3.235
million, and inevitably, a large percentage of the
required thermal energy (about 18%) would have
to be supplied by the electricity power directly,
which is not desirable. If the total electric power is
purchased from the upstream network, not only do
the costs increase enormously but they also cause
many power outages (about 24%) in the network,
indicating that the power consumption is not
satisfied. These phenomena will worsen the
situation when the entire power grid is interrupted.
At that time, only the electrical power on the grid
is supplied by CHP, which causes it to turn into
overload. The unsupplied energy in the scenarios
considered, the more resources outflow, the higher
the operating cost, and an unsupervised energy
will be obtained. The worst case is when the
consumed gas is out of the global grid as about
29%. The risk assessment is also an important
factor in achieving a high profit for about $2.3
million (from $4.5 million to $2.2 million) by the
independent operator, indicating the risk of
choice. The conditional value at risk in the
sensitivity analysis suggests that the higher the
risk-taker of the future contract on the electricity
market, the higher the gain, which, in turn, lowers
the network's confidence. As a result, the
sensitivity analysis is a major key in order to
evaluate the grid load procurement performance
under contingencies.
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