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Abstract 

This paper analyses the VCR (variable compression ratio) engine's performance, combustion, and emission 

output responses. The experimental results are modelled using the Grey Taguchi method (GTM) for the input 

parameters of compression ratio, load, and fuel blends. The objective is to find the optimal combination of 

the input parameters in the minimum number of experiments for minimum emission, better performance, and 

combustion parameters. The Taguchi’s L9 orthogonal array with GTM is used to get the optimum 

combination of the input parameters. The Taguchi is used to analyze the S/N ratio of the experimental data 

and the gray-based method for optimization of the multi-objective to single-objective optimization by 

assigning the suitable weighting factor to each response. The S/N ratio analysis of grey relational grade 

(GRG) shows the fuel B10, CR 16, and load at 100% of the optimal input factor level. This optimal level is 

further confirmed by the TOPSIS method. The analysis of variance (ANOVA) for input to GRG shows the 

highest influencing factor is the load with a 52.82% contribution, followed by CR at 28.38%, and fuel at 

10.52%. The confirmatory results show an improvement of 56.1%. The novelty of this experimentation is to 

study the feasibility of existing engine for alternative fuel with a slight modification. At the above optimal 

conditions, this biodiesel can be used efficiently in an unmodified compression ignition engine. 

 

Keywords: Combustion, performance, emission, biodiesel, priority matrix, GTM, TOPSIS. 

1. Introduction 

In every field of industrialization, the diesel 

engines are used due their high reliability, thermal 

efficiency, excellent power, and fuel efficiency 

(40-50%) over the spark ignition engines. 

Consequently, an industrial and economic 

development is attributed to air pollution, which 

causes 6.5 million deaths each year [1]. This 

alarming level of air pollution and depleting fossil 

fuel mainly is due to the excessive use of 

petroleum products in automotive industries. 

Moreover, energy demand for the world up to 

2030 would be 50% more than today, out of 

which, the US, China, Japan, and India are 

consuming more energy as compared to the other 

countries [2]. In 1990, India was importing the oil 

products around 43%, and that increased to 71% 

in 2012, as a result, a lot of burden on the Indian 

economy. Out of total energy consumption in 

India, 51% share is of the transport sector, and 

this consumption rate estimated will be raised by 

6 to 8 percent shortly [3]. The ever increasing 

demand for fossil fuel causes declining its 

sources, and also higher pollution level leads to 

strict emission regulations for the transport 

vehicles. This feature has forced the decision-

makers and researchers to explore a fuel that 

produces minimum pollution as well as renewable 

and sustainable like vegetable oil based biodiesel, 

alcohols, etc. to replace the conventional fuel 

shortly. The vegetable oil based biodiesel could be 

the first generation, i.e. edible oil such as coconut, 

palm, rapeseed, sunflower, and second generation 

(non-edible oil) such as Pongamia pinnata, 

jatropha curcus, castor, sea mango, neem, and 

mahua, and third generation biodiesel based on 

microalgae[4]. The second or third generation 

biodiesels does not affect the food security, and 

hence, mostly selected for biodiesel production. 

Therefore, to encourage the agriculture sector, and 

to ease the fuel shortage, and burden on the 

economy, India has proposed for blending the 

20% biodiesel and alcohol in transportation fuel 
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by 2017 under the national biofuels policy [5]. 

Biodiesel’s many salient features viz. 

biodegradable nature, not any traces of sulfur and 

aromatic compounds can reduce the toxic 

emissions. These excellent characteristics of 

biodiesel could prove the good option to use the 

biodiesel-fueled engine in urban and no pollution 

zone area namely in parks.  In the literature, it 

mentioned that by mixing a small amount of 

biodiesel can enhance fuel viscosity, extend 

engine life, and increase fuel efficiency.  

 

1.1 Engine optimization literature 

The all existing transport and industrial diesel 

engines are designed and optimized, considering 

fuel as petroleum diesel. Therefore, the operating 

parameters have to be optimized to use the 

biodiesel as fuel in the unmodified engine to 

reduce the design and modification cost. Many 

researchers have studied the optimization of 

compression ignition engine using different 

biodiesel/diesel fuel blend. The various techniques 

used for optimization of engine parameters 

namely response surface methodology (RSM) 

[6,7–9,10], Taguchi approach [11,12,13], 

Taguchi-grey relational analysis method (GTM) 

[14,15,16], GTM-TOPSIS( technique for order 

preference by similarity to ideal solution) method 

[17], genetic algorithm and artificial neural 

network [18]. These techniques are helpful for 

reliability and accuracy to get the result in a 

minimum number of experiments and cost. 

Parameter optimization of Karanja 

biodiesel/diesel-fueled engine was carried out 

using non-linear regression and reported the 

optimized factor of fuel blend B13 and IT at 24 
0
bTDC [19]. Thermodynamic and Taguchi model 

used to analyze the Jatropha biodiesel fed engine. 

The maximum engine performance for biodiesel 

found at optimized engine design and 

performance parameters [20]. 

The algorithm based on particle swarm 

optimization (PSO) was used to investigate the 

diesel engine parameters for improving the fuel 

efficiency and decrease the engine out emissions 

[21]. The optimization of performance and 

emission parameters was carried out in a single 

cylinder diesel engine of power 5.2 kW fueled 

with Karanja biodiesel. The input parameters were 

compression ratio, fuel fraction, injection timing 

(IT), injection pressure (IP), and load with output 

parameters fuel consumption, emission, and brake 

power. The input parameters were taken at 4-level 

and Taguchi-GM approach used with orthogonal 

array L16 for getting optimum settings. The 

authors reported the compression ratio 17.7, brake 

power 3.64 kW, biodiesel blend B20, IT 27 
0
bTDC, and IP 230 bar optimum operating 

parameters of the engine [22]. Fish oil biodiesel 

blends and a linseed oil biodiesel blends a load on 

the engine was varied at six and five levels, 

respectively. The optimization of various 

performance, combustion, and emission 

parameters has been done using fish oil biodiesel. 

The Taguchi-fuzzy approach was used to optimize 

the parameters, and ANOVA was used to get the 

effect of each working parameter on output 

parameters [23]. An experimental study was 

carried out in a dual fuel mode of CNG-diesel and 

optimizations of IP, load, and energy shared by 

CNG (CES) have been done to reduce the brake 

specific fuel consumption, emission of net 

hydrocarbon (NHC) and particulate matter (PM). 

Using grey-Taguchi approach, they reported the 

optimal input parameters as load 4 kg, IP 540 bar, 

and CES of 15% [24]. Zhan-Yi Wu et al. [25] 

investigated the combustion and emission features 

at optimal operating condition using Taguchi 

approach. They noted the biodiesel fuel blend 

B10, liquid petroleum gas (LPG) 40%, EGR ratio 

20%, and load 60% as the optimal operating 

parameter for reducing the emission of smoke by 

52% and NOx 31%. The literature shows that 

most of the optimization of the engine parameter, 

evaluated with biodiesel of Karanja, Jatropha, 

Mangifera indica, Pongamia, mahua, fish oil, 

honge, and sesame and that too mostly on 

performance and emission parameters. 

Furthermore, it shows that each biodiesel has a 

different optimized parameter [26] for maximum 

performance and minimum emission 

characteristics of compression ignition engine. 

This different optimum setting for each biodiesel 

depends on their physical and chemical properties. 

In this connection, still, much more non-edible 

oil's biodiesel has to be studied for its 

optimization for using in an unmodified engine. 

The available information on optimization related 

to combustion responses and linseed methyl ester 

is less to the best of author’s knowledge. 

The design of experiment's (DOE) Taguchi 

method used for the analysis purpose. This 

method proposed by the  Dr. Genichi Taguchi 

[27] for optimization of the parameter, which 

provides the information about the best control 

parameters in the least number of experiments. 

The accuracy and reliability of the Taguchi 

method solely depend upon the way the factors 

and their values have been chosen. In the Taguchi 

design, the robustness of any control elements is 

measured by the way it affected by the 

uncontrolled factors (noise level). The purpose of 
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Taguchi design is to identify the best control 

factor, which has a less variability due to the 

uncontrolled factors (noise level) such as ambient 

temperature, and engine vibration. The variability 

in control factors is measured by the Taguchi's 

signal to noise ratio (S/N). The S/N ratio is the log 

function of output measured parameter, and these 

are to be calculated for each output parameter. 

The higher the S/N ratio means better the control 

factor and less variability due to the noise levels 

[28,29]. The S/N ratio calculated by the three 

design conditions namely larger the better, smaller 

the better, and nominal the better. The 

arrangement of control factors and their levels in a 

minimum number of experiments called 

orthogonal array to get the effect of control factors 

on given responses. However, the Taguchi method 

is used for single objective optimization. For more 

than one responses/multi objective (output 

parameters), the grey relational analysis method 

proposed by Deng [30] is used. In the GM 

method, all the responses are combined and 

converted into a single response optimization 

problem. The Taguchi and GM methods are 

combined for optimization of multi-objective 

responses. 

The grey relational analysis method (GM) concept 

uses two conditions of information. The condition 

at which not at all any information (black) is 

available for the system ultimately, there is no 

solution. Another side is with full of information 

(white), which could have a unique solution for 

the system of information. However, these kinds 

of extremities never exist in real world but 

somewhere in between. Therefore, GM uses to 

solve the problems that have less or partially 

available information. That converts the multi-

objective problem into single objective and 

Taguchi used for optimization. Many authors have 

used this combined technique of optimization for 

solving the problems [31,32–35, 36]. 

The TOPSIS method has been used in many 

applications for optimization purpose. However, 

the authors [37]  noted its limitations as it does not 

accounts relative significance of distances it 

measures from two reference points for optimal 

solution. Furthermore, it has been reported that 

the TOPSIS and grey relational methods have the 

similarity and the limitation of TOPSIS can be 

overcome by integrating with GTM [38,39]. The 

optimal combination of input parameters has been 

obtained for performance improvement and 

reducing the emissions. 

The objective of the present work is to optimize 

the combination of fuel blend, CR, and a load of 

linseed methyl ester/petro-diesel fed single 

cylinder diesel engine to improve the 

performance, combustion and to reduce the 

emission characteristics. This has been done by 

performing the experiments and with help of 

optimization tools. An orthogonal array L9 used to 

arrange the input factors and their levels in nine 

numbers of experiments. GTM has been used to 

optimize the responses and to identify the best 

combination of input parameters. The Minitab 17
®
 

software has been used for analysis of the 

experimental results. Further, the method of 

TOPSIS confirms the optimized results of GTM. 

The novelty of this experimentation was to study 

the feasibility of existing engine for alternative 

fuel with slight modification and confirmation of 

operating/fuel parameters. 

 

2. Materials and experimental methodology  

 

2.1. Fuel preparation: 

Linseed oil was selected for the present work; 

India is the third major producer of linseed oil 

after Australia and Canada. Linseed is mainly 

cultivated in India for oil and fibers in the month 

of October–November. Linseed Seed contains 

around 33% to 47% of the oil. Its seed cake used 

for feeding a cattle and a small part of its oil used 

for edible and most of the linseed oil (80%) used 

for industrial purpose. This oil highly unsaturated 

and has more percentage of linolenic acid, and 

therefore, it can be employed for making oil cloth, 

paints, printed ink, and varnish, etc. There are 

different methods for biodiesel preparation. Those 

are pyrolysis, macro-emulsion, dilution, and 

transesterification. Transesterification is the most 

widely used process because it is simple, efficient, 

and economical. Here, two stage 

transesterifications are used to convert the raw oil 

into biodiesel. The transesterification process uses 

the catalyst for carrying out the reaction and could 

be base, acid, enzyme. In this process, initially, 

esterification of raw oil is performed followed by 

the transesterification of esterified oil. Thus the 

two stages are esterification followed by 

transesterification. Esterified linseed oil was 

obtained from esterification reaction, i.e. first step 

of two-stage transesterification of biodiesel 

preparation method. In the esterification reaction, 

the reaction takes place between the carboxylic 

acid group (free fatty acid) present in the fresh 

linseed oil and with the alcohol in the presence of 

an acid (H2SO4) catalyst. In this reaction, –OH 

from the carboxylic acid combine with –H  from 

alcohol and produce an ester of linseed oil and 

H2O as a by-product, as given in equation 1 [40, 

41]. 
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2 4

4 2 2 4

H SO

Catalyst
FFA Alcohol Water Ester

R COOH R OH H O R CO OH C R      
 

 (1) 
 

The esterification reaction does not remove the 

glycerol and adds additional carbon chain. This 

esterified linseed oil (ELO) is treated with 

methanol and catalyst (NaOH) with different 

combinations for getting the optimum yield as 

shown in table 1. Then the quantity of methanol 

(20% vol.) and catalyst (0.5% weight) has been 

used for mass production of biodiesel. The 

prepared linseed methyl ester biodiesel (LB) and 

its blends with petro-diesel have been given in 

table 2. The different volumes of biodiesel have 

been mixed with petro-diesel to prepare the 

biodiesel fuel blend; LB10 indicates 10% of 

biodiesel on the volume basis and remaining 

petro-diesel volume. 
 

Table 1. Biodiesel conversion efficiency. 
 

Trial 
ELO 

(mL) 

Methanol 

(vol. %) 

Catalyst 

(wt. %) 

Yield 

(vol. %) 

1 200 20 0.35 80 

2 200 20 0.36 80 

3 200 20 0.39 75 

4 200 20 0.4 66 

5 200 20 0.5 85 

 
Table 2.   Fuel properties. 

 

Properties Petrodiesel LB10 LB20 LB30 

Density 

at 400C (kg/m3) 
829 834 842 853 

Kinematic viscosity 

at 400C (cSt) 
2.68 2.82 3.12 3.3 

Flash point 

(0C) 
50 96 102 120 

Fire point 

(0C) 
-- 102 110 125 

Lower Calorific value 

(MJ/kg) 
43.5 42.65 42.11 40.83 

 

2.2 Experimental setup and methodology 
The experimental setup’s schematic diagram is 

shown in figure 1. The experiment has been 

conducted with single cylinder four strokes; 

variable compression ratio diesel engine. The 

engine has 3.5 kW power rating at 1500 rpm, bore 

diameter of 87.5 mm, and stroke length of 110 

mm. The capacity of the engine is 0.661 liters 

with connecting rod length of 234 mm. 

F1 = Fuel flow, F2 = Air flow, F3 = Engine cooling 

water flow, F4 = Calorimeter water flow, N = 

Speed of engine in rpm, W = Eddy current 

dynamometer, PT = Pressure transducer, DAS = 

Data acquisition system, EGA = Exhaust gas 

analyzer T1 = Engine inlet cooling water temp. T2 

= Engine outlet cooling water temp, T3 = Engine 

exhaust gas temp. 
 

 
 

Fig 1. Schematic diagram of experimental setup. 
 

The experimental setup has been provided with 

suitable instruments for combustion pressure, fuel 

line pressure, and crank angle measurements. The 

measured data is interfaced with a computer for 

generating the pressure crank angle diagrams. The 

panel box of the engine set up consisting of digital 

temperature indicators, digital voltage indicator, 

and digital load indicator with load control knob 

of eddy current dynamometer, air-box with orifice 

meter for measurement of air flow and graduated 

glass burette for fuel flow indicator. All these 

experimental data signals are transmitted to a 

Labview-based data acquisition software 

"ICEnginesoft" for online performance/ 

combustion evaluation. For loading the engine, 

the strain gauge type load sensor of range 0-50 kg 

used. The temperature sensors RTD, PT100, and 

K type thermocouples are used to measure 

exhaust gas and engine cooling water temperature 

at various locations with accuracies of ±0.1 
0
C. 

Engine water flow rate was adjusted at 300 mph 

by using the suitable Rotameter to maintain the 

engine cooling water temperature 70 
0
C at the 

outlet. The combustion pressure and fuel line 

pressure are measured by using the two 

piezoelectric sensors of range 0–5000 PSI; crank 

angle sensor is used for measuring the crank angle 

with a resolution of 1 degree of crank angle. The 

emission parameters measured at variable CR and 

load using INDUS five gas analyzer (PEA 205N, 

Make: INDUS). The specification of gas analyzer 

has tabulated in table 3. 
 

Table 3. INDUS (PEA 205N) Five Gas Analyzer specification. 
 

Measured Range Resolution Accuracy 

CO 0 to 15% Vol 0.01% Vol 
±0.02% Vol; 

±3% O.M 

CO2 0 to 20% Vol 0.01% Vol 
±0.3% Vol; 

±3% O.M 

HC 0 to 30000 ppm 
≤ 2.000: 1 

ppm vol. 

< 2000 ppm vol.: 

±4 ppm vol.  ±3 

O.M. 

O2 0 to 25% 0.01% vol. ± 0.02% vol. 

NOx 0 to 5000 ppm 1 ppm vol. ± 5 ppm vol. 
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The rated power rating of the engine is 3.5 kW at 

1500 rpm with water cooled eddy current 

dynamometer for loading the engine. The engine 

has the suitable sensing device for temperature, 

pressure, flow rate, and crank angle measurements 

with data acquisition system. The engine has 

compression ratio (CR) ranges from 12:1 to 18:1. 

In the present work, the CR selected was 14:1, 

16:1, and 18:1. For each CR, the load has been 

varied from 60% to 100% (7.4 to 12.28 kg), in the 

step of 20%. The combustion, performance, and 

emission characteristics were observed for each 

load and CR. Injection pressure and timing were 

kept constant at 210 bar and 23
0
 bTDC for all 

observations. Rigorous warming experimental 

work was performed. In each test, the engine was 

run for 5 minutes for properly up the engine and 

stabilizing the set of all working parameters. For 

reliability and accuracy, a set of results were taken 

six times for ten cycles each, and the best result is 

taken for analysis purpose. 

 

2.3 Error /uncertainty analysis 

Errors and uncertainties in the experiments can 

arise from instrument selection, condition, 

calibration, environment, observation, reading and 

test   planning. Uncertainty analysis is needed to 

prove the accuracy of the experiments [42]. The 

percentage uncertainties of various parameters 

like brake power and brake thermal efficiency 

were calculated using the percentage uncertainties 

of various instruments given in table 4. An 

uncertainly analysis was performed using.  
Percentage Error = Square root of sum of squares 

of the uncertainty in measuring instruments. 

Percentage of uncertainty occurring in the 

experiments = square root of ((uncertainty of 

pressure transducer)
2 

+ (uncertainty of angle 

encoder)
2 

+ (uncertainty of NOx)
2 

+ (uncertainty 

of HC)
2 

+ (uncertainty of CO)
2 

+ (uncertainty of 

CO2)
2 

+ (uncertainty of O2)
2 

+ (uncertainty of 

Smoke opacity)
2 

+ (uncertainty K-2 

thermocouple)
2 

+ (uncertainty of stop watch)2
 
+ 

(uncertainty of manometer)
2 

+ (uncertainty of 

burette)
2
) 

 

%Error in experimental measurement = square 

root of ((0.1)
2
 +  (0.2)

2
 + (0.2)

2 
+ (0.2)

2 
+ (0.6)

2 
+ 

(0.5)
2 

+ (0.01)
2 

+ (0.01)
2 

+ (0.15)
2 

+ (0.2)
2 

+ (1)
2 

+ (1)
2
) = 1.674%  

 

3. Taguchi and GM technique for optimization  

As mentioned, these two methods were combined 

to solve the multi-objective related problem. This 

combined method's steps are shown in figure 2. 

The left part of the figure indicates the Taguchi 

method and the right part is the GM method.  
 

 
 

Figure 2. Steps in GTM method. 
 

3.1. Selection of factors and their levels 

The selection of factors and levels for 

optimization entirely depends on the designer's 

level of understanding the experimental setup and 

its effects on the output responses. In this study, 

the three input factors viz. fuel blend, CR, and 

load and their three levels have been selected, as 

shown in table 4. 
 

Table 4.  Factors and their levels. 
 

Factors Level 1 Level 2 Level 3 

A: Fuel blend B10 B20 B30 

B: CR 14 16 18 

C: Load (%) 60 80 100 

 

These selected factors and levels are provided in a 

Taguchi's orthogonal array (OA) in such a way 

that optimization should be in a minimum number 

of experiments/trials [43,44,45]. These figures of 

the testing are calculated as per the equation 2. 
 

Minimum number of trials = [(F - 1)×L] + 1           

 = [(3 - 1)×3] + 1 = 9 = L9 

(2) 

 

where F and L are the number of factors and 

levels, respectively, selected for the study.  

Based on the factors and their levels, these are 

arranged in a minimum number of trials (OA L9). 

These combinations along with their experimental 

results of responses are given the table 5. 
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3.2. Signal to noise (S/N) ratio calculation 

The analyses of results are carried out by 

calculating the S/N ratio. In this study, for 

calculation of S/N ratios following two design 

conditions are used. 

For larger the better characteristics 
 

𝜼ij= -10×log (
𝟏

𝒓
∑

𝟏

𝒎ijk
𝟐

𝒓

k=1

) (3) 

 

For smaller the better characteristics 

 

𝜼ij= -10×log (
𝟏

𝒓
∑ 𝒎𝒊𝒋𝒌

𝟐

𝒓

k=1

) (4) 

 

Where 𝜂ij is the S/N ratio of experiment number i 

for response j, and  mijk is the simulation result for 

trial i for response j, in k
th
 number of replication 

and r is the number of replication required. The 

BTE, CP, NHR, and RPR taken as ‘larger the 

better’ responses and   BSFC, EGT, CO, HC, 

NOx, smoke are ‘smaller the better’ responses. 

The S/N ratio calculated by using the equations 3 

and 4 and represented in table 6. 
 

Table 6.  Signal to noise (S/N) ratio of experimental results. 
 

Expt. No. 

S/N ratio 

BTE BSFC EGT CP NHR RPR  CO HC NOx Smoke 

1 26.42 7.96 -49.61 29.75 29.30 -1.51 20.92 -31.36 -54.17 -24.93 

2 27.63 9.37 -51.28 29.40 29.67 -2.05 21.01 -31.36 -55.74 -27.22 

3 28.35 9.37 -52.51 29.66 31.31 3.11 15.19 -34.32 -57.03 -32.44 

4 27.89 9.37 -50.59 31.76 31.80 6.24 24.88 -26.85 -55.95 -23.46 

5 28.19 9.63 -52.09 31.92 31.68 5.53 18.86 -29.83 -56.91 -29.83 

6 27.12 8.64 -48.96 31.54 30.32 3.69 22.73 -26.02 -53.82 -22.52 

7 29.20 10.46 -50.90 33.44 30.60 6.57 28.87 -22.28 -59.02 -26.29 

8 27.53 8.87 -48.53 33.14 29.85 4.66 28.40 -21.58 -55.16 -24.69 

9 29.04 10.17 -49.55 33.24 28.99 1.06 27.54 -23.52 -57.56 -25.98 

 

3.3. Grey relational generation 

The GM optimization was used to solve the multi-

interdependent responses problem [46], the steps 

are shown in lower part of the flowchart of figure 

2. In this part of optimization, the first step is to 

linear normalization of calculated S/N ratio 

between 0 and 1, known as grey relation 

generation. 

The grey relation generation sij for trial i and 

response j has been calculated using equations 5 

and 6. Equation 5 is used for larger the better 

responses and 6 for smaller the better responses 

for calculating the grey relational generation. 
 

 

(5) 

  

max

max min

j ij ij

ij

j ij j ij

s
 

 





 

(6) 

Table 5.  Arrangement of factors and levels in orthogonal array (L9) with experimental results. 
 

Expt 

No. 

OA L9 Output parameters/ Responses 

Fuel CR 
Load 

(%) 

BTE 

(%) 

BSFC 

(kg/kWh) 

EGT 

(0C ) 

CP 

(bar) 

NHR 

(J/deg) 

RPR 

(bar/deg) 

CO 

% 

HC 

ppm 

NOx 

ppm 
Smoke (HSU) 

1 B10 14 60 20.93 0.4 302.418 30.74 29.19 0.84 0.09 37 511 17.64 

2 B20 14 80 24.06 0.34 366.487 29.5 30.46 0.79 0.089 37 612 22.95 

3 B30 14 100 26.14 0.34 422.33 30.41 36.77 1.43 0.174 52 710 41.88 

4 B10 16 80 24.8 0.34 338.459 38.73 38.92 2.05 0.057 22 627 14.89 

5 B20 16 100 25.67 0.33 402.296 39.43 38.39 1.89 0.114 31 701 31.02 

6 B30 16 60 22.71 0.37 280.6 37.76 32.8 1.53 0.073 20 491 13.37 

7 B10 18 100 28.85 0.3 350.928 46.99 33.89 2.13 0.036 13 893 20.63 

8 B20 18 60 23.8 0.36 266.952 45.38 31.07 1.71 0.038 12 573 17.15 

9 B30 18 80 28.31 0.31 300.26 45.9 28.15 1.13 0.042 15 755 19.91 
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The grey relational generations for 

normalized S/N ratio are tabulated in table 7. 

After calculating the grey relational 

generation, all the performance values are 

scaled up between 0 and 1.  If the 

performance value sij for experiment number i 

of response j is 1 or nearer to 1, then this 

performance value of i is best for response j. 

However, these kinds of situations never 

exist; hence, a reference sequence X0 

(best/ideal value) = (X01, X02, ….) = (1, 

1, ….) is introduced for comparability. 

 
3.3. Calculation of grey relational coefficient 

The grey relational generation compared with 

reference sequence and determined how close 

sij to X0 . This closeness is represented by the 

grey relational coefficient ij and calculated 

as given in equation 7. 

min max

max

.

.
ij

ij






  


  
 

(7)  

 
 

 
 

where ∆𝑖𝑗= |𝑥0𝑗 − 𝑠𝑖𝑗| and ζ is the 

distinguishing coefficient used for 

compressing or expanding the range of 𝜔𝑖𝑗 

responses. m and n are the number of 

trials/experiments and responses. 

The value of ζ lies between 0 and 1, and most 

of the researchers have taken the value of it as 

0.5. However, any value of it does not affect 

the ranking of an optimum experimental 

alternative. The calculated values of ∆𝑖𝑗, ∆𝑚𝑖𝑛 

and ∆𝑚𝑎𝑥are tabulated in table 8 and grey 

relational coefficient in table 9. 

 

Table 7. Grey relational generations. 
 

Exp. No. BTE BSFC EGT CP NHR RPR CO HC NOx Smoke 

X0 1 1 1 1 1 1 1 1 1 1 

1 0.00 1.00 0.73 0.09 0.11 0.08 0.5816 0.2321 0.9333 0.7573 

2 0.43 0.44 0.31 0.00 0.24 0.18 0.5745 0.2321 0.6317 0.5268 

3 0.69 0.44 0.00 0.07 0.82 0.37 1.0000 0.0000 0.3834 0.0000 

4 0.53 0.44 0.48 0.58 1.00 0.94 0.2917 0.5866 0.5912 0.9057 

5 0.64 0.33 0.11 0.62 0.96 0.81 0.7316 0.3528 0.4047 0.2629 

6 0.25 0.73 0.89 0.53 0.47 0.48 0.4487 0.6516 1.0000 1.0000 

7 1.00 0.00 0.40 1.00 0.57 1.00 0.0000 0.9454 0.0000 0.6201 

8 0.40 0.63 1.00 0.93 0.30 0.65 0.0343 1.0000 0.7418 0.7819 

9 0.94 0.11 0.74 0.95 0.00 0.00 0.0978 0.8478 0.2807 0.6512 

 

Table 8. Calculation of ∆ij. 
 

ExpNo. BTE BSFC EGT CP NHR RPR CO HC NOx Smoke 

1 1.00 0.00 0.27 0.91 0.89 0.92 0.42 0.77 0.07 0.24 

2 0.57 0.56 0.69 1.00 0.76 0.82 0.43 0.77 0.37 0.47 

3 0.31 0.56 1.00 0.93 0.18 0.63 0.00 1.00 0.62 1.00 

4 0.47 0.56 0.52 0.42 0.00 0.06 0.71 0.41 0.41 0.09 

5 0.36 0.67 0.89 0.38 0.04 0.19 0.27 0.65 0.60 0.74 

6 0.75 0.27 0.11 0.47 0.53 0.52 0.55 0.35 0.00 0.00 

7 0.00 1.00 0.60 0.00 0.43 0.00 1.00 0.05 1.00 0.38 

8 0.60 0.37 0.00 0.07 0.70 0.35 0.97 0.00 0.26 0.22 

9 0.06 0.89 0.26 0.05 1.00 1.00 0.90 0.15 0.72 0.35 

∆min 0 0 0 0 0 0 0 0 0 0 

∆max 1 1 1 1 1 1 1 1 1 1 

 

Table 9. Calculation of grey relational coefficient. 
 

ExpNo BTE BSFC EGT CP NHR RPR  CO HC NOx Smoke 

1 0.33 1.00 0.65 0.35 0.36 0.35 0.54 0.39 0.88 0.67 

2 0.47 0.47 0.42 0.33 0.40 0.38 0.54 0.39 0.58 0.51 

3 0.62 0.47 0.33 0.35 0.74 0.44 1.00 0.33 0.45 0.33 

4 0.51 0.47 0.49 0.55 1.00 0.89 0.41 0.55 0.55 0.84 

5 0.58 0.43 0.36 0.57 0.92 0.73 0.65 0.44 0.46 0.40 

6 0.40 0.65 0.82 0.52 0.49 0.49 0.48 0.59 1.00 1.00 

7 1.00 0.33 0.46 1.00 0.54 1.00 0.33 0.90 0.33 0.57 

8 0.45 0.58 1.00 0.87 0.42 0.59 0.34 1.00 0.66 0.70 

9 0.89 0.36 0.66 0.91 0.33 0.33 0.36 0.77 0.41 0.59 
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3.4. Calculation of grey relational grade 

Calculation of grey relational grade needs the 

suitable weighting factor for each response. The 

weighting factor is a very crucial factor because it 

affects the grading of trials. Hence, in this study, 

weighting factor has been calculated judiciously 

and logical manner to avoid any error in the 

performance calculation. The weights (wj) based 

on decision-makers judgement but this must be 

∑wj = 1. These weights are decided by the priority 

matrix as explained in the Section 4.1 and values 

are as follows, BTE = 0.25, BSFC = 0.16, EGT = 

0.02, CP = 0.11, NHR = 0.25, RPR = 0.11, CO = 

0.02, HC = 0.02, NOx = 0.02, Smoke = 0.02. 

After calculating the weights, the grey relational 

GMdes are calculated using equation 8. 
 

𝛾𝑖 = ∑ 𝑤𝑗𝜔𝑖𝑗
𝑛
𝑗=1   , i=1,2,3,…m (8) 

 

where γi indicates the grey relational GMde for i
t
s 

experiment and wj is the weighting factor for j
th 

response. 

Grey relational grade (GRG) calculation is 

converting the multi-objective to a single 

objective in the form of GRG. Using the above 

equation grey relational grade has been calculated 

and shown in table 10. For example, calculation of 

grey relational grade for experiment number 1 is 

as follows. 

0.25*0.33+0.16*1.00+0.02*0.65+0.11*0.35+0.25

*0.36+0.11*0.35+0.02*0.54+0.02*0.39+0.02*0.8

8+0.02*0.67= 0.46 
 

Table 10. Grey relational grade (GRG). 
 

Expt. No. GRG Rank 

1 0.4582 8 

2 0.4206 9 

3 0.6056 4 

4 0.6599 3 

5 0.6604 2 

6 0.4870 7 

7 0.7117 1 

8 0.5185 6 

9 0.5569 5 

 

The grey relational grade implies the degree of 

closeness of comparability sequence to the 

reference sequence. If the comparability sequence 

(GRG) value is higher, indicates mores closer to 

the reference sequence (best) [47]. Therefore, the 

particular experiment number will be the best 

choice whose GRG is higher value. The values of 

GRG from the table 10 indicates that the test 

number 7 had the highest value as compared to 

others and ranked 1. Similarly, the ranking of 

experiment number has been done as per the 

descending value of GRG as shown in table 10. 

The operation number 7 is the combination of fuel 

blend B10, CR 18, and load 100% which gives the 

best performance characteristics. 

 

3.5 Calculation of optimal factor level effect 

In the Taguchi method, performance 

characteristics are additive. Then it is possible to 

predict the factor level effect by knowing the main 

results. In this study, the effect of fuel at level 1 

(A1) can be calculated by averaging the GRG of 

all experiments where it has level 1. For example, 

the factor fuel level 1 is B10 and it has in 

experiment numbers 1, 4, and 7, as shown in table 

5 orthogonal array. Therefore, the effect of factor 

fuel level 1 has been calculated by taking the 

average value of GRG at these three experiments. 
 

 1

1
0.46 0.66 0.71 0.61

3
A      

 

Similarly, all factor levels effect calculated and 

tabulated in table 11 and ranked the influence of 

factor on performance characteristics based on the 

higher value. This ranking of factors effect 

denotes the load has the highest effect on 

performance characteristics followed by CR, and 

fuel. The analysis of variance (ANOVA) for grey 

relational grade performed to know the further 

factor’s effect. 
 

Table 11.  Factor level effects. 
 

Factor L1 L2 L3 Max-Min Rank 

Fuel 0.61 0.53 0.55 0.08 3 

CR 0.50 0.603 0.60 0.10 2 

Load 0.49 0.55 0.66 0.17 1 

 

4. Techniques for order preference by 

similarity to ideal solution (TOPSIS) method  
The method of TOPSIS was developed and used 

by Yoon and Hwang [48] for decision-making 

problems. The authors have suggested that in the 

decision-making problems, the preferred 

alternative should have the shortest distance from 

the ideal best solution and farthest from the ideal 

worst solution in terms of geometrical sense. The 

ideal best solution is a hypothetical term indicates 

the maximum value of the attribute (response) that 

gives the optimum solution of the problem and 

ideal worst solution denotes the minimum value 

of response in the data base. The TOPSIS method 

gives the solution that is closest to the ideal best 

and farthest from the ideal worst solution. It is a 

multi-criteria decision-making (MCDM) tool, 

used for selecting best trial/experiment from the 

available set of tests. It helps to choose the 

optimal combination of input factors for better 

performance characteristics in a given trial. The 

trial/experiment numbers are designed based on 

the Taguchi's orthogonal array concept for 
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arranging the input factors and their levels in a 

minimum number of trials. The TOPSIS method 

was used for accurate weather forecasting 

application [49]. The optimization of electric 

discharge machining parameters for the material 

AISI D2 tool using the TOPSIS method [50]. In 

this study, TOPSIS was used to rank the 

experiment numbers as per the performance index 

values obtained by this method. After arranging 

the factors and their levels in a nine number of 

operations, the TOPSIS method used to find the 

performance index in following steps. 

4.1 Normalization of decision matrix (Nij) 
In this, the experimental results given in the table 

5, are normalized by using equation 9 and 

normalized decision matrix are depicted in table 

12. In this method of TOPSIS, alternative means 

the number of experimental trials and attributes 

means the output responses. 

1

2
2

1

ij

ij

n

ij

j

m
N

m




 
 
 


 

(9) 

  
 

Table 12. Normalized decision matrix. 

Alt. 
Attributes 

BTE   BSFC  EGT CP   NHR  RPR CO  HC      Nox  Smoke    

1 0.2775 0.3870 0.2960 0.2636 0.2904 0.1782 0.3346 0.4183 0.2567 0.2477 

2 0.3190 0.3289 0.3587 0.2530 0.3030 0.1676 0.3309 0.4183 0.3075 0.3223 

3 0.3465 0.3289 0.4134 0.2608 0.3658 0.3033 0.6468 0.5878 0.3567 0.5881 

4 0.3288 0.3289 0.3313 0.3322 0.3872 0.4348 0.2119 0.2487 0.3150 0.2091 

5 0.3403 0.3193 0.3938 0.3382 0.3819 0.4009 0.4238 0.3504 0.3522 0.4356 

6 0.3011 0.3580 0.2746 0.3239 0.3263 0.3245 0.2714 0.2261 0.2467 0.1878 

7 0.3825 0.2902 0.3435 0.4030 0.3372 0.4518 0.1338 0.1470 0.4487 0.2897 

8 0.3155 0.3483 0.2613 0.3892 0.3091 0.3627 0.1413 0.1357 0.2879 0.2408 

9 0.3753 0.2999 0.2939 0.3937 0.2801 0.2397 0.1561 0.1696 0.3793 0.2796 

 

4.2. Weight calculation for attributes 

(responses) (wj) 

The weights are calculated by constructing the 

priority matrix of responses. In this article, the 

number of responses is 10, hence, priority matrix 

10 × 10 has been prepared. In the priority matrix, 

the values of judgment made by the authors are 

entered using the basic scale of relative 

importance [51]. The verbal judgments ‘equally 

preferred’, moderately preferred’, strongly 

preferred’, ‘very strongly preferred’, and 

extremely preferred are indicated by the numerical 

values 1,3,5,7, and 9. If the judgments seem to be 

in between then the numerical values 2, 4, 6, and 

8 can be used. The preferences of row over 

column and vice versa of verbal judgments are 

tabulated in table 13. 
 

Table 13. Numerical values of verbal judgments. 
 

E
q

u
a
l 

1
 

        Increasing row importance over column 

2 3 4 5 6 7 8 9 

1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 

         Increasing column importance over row 

 

In the priority  matrix, the cell entry cij denotes the 

numerical value of i
th
 row response compared with 

j
th
 column response as per the verbal judgments. If  

i = j, then cij = 1 and  cji = 1/cij. Hence, in the 

matrix, all the diagonal entries indicate the 

response is compared with itself and assigned 

numerical value 1. The priority matrix has been 

constructed using the verbal judgments based on 

their relative importance and tabulated in table 15. 

Next, multiply the cell values in each row and 

take the 10
th
 root of multiplication. Then each 

row’s tenth root product is added and is equal to 

16.2370. Row ‘SUM’ denotes the sum of column 

elements for each response. Weights are 

calculated for each response by linear 

normalization of 10
th
 root product. The tenth root 

of response is divided by the total sum of all 

responses tenth root product gives the priority 

vector (weight) for that response. Let us say, 

weight of response BTE = 3.5887/ 16.2370 = 

0.22. 

The consistency of values entered in the priority 

matrix has been checked by consistency index 

(CI) as given by equation 10. 

 

max

1

n
CI

n

 



 (10) 
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where 𝜆𝑚𝑎𝑥 is the total sum of values in the row 

‘SUM*PV' and is equal to 10.2092, n is the total 

number of responses, i.e. 10. 
 

CI= 0.023244 
 

After calculation of CI, next to check, how 

consistently the author has assigned the values in 

the relative importance of responses. This has 

been calculated by the consistency ratio (CR) as 

follows:  

 

CR = CI/RI = 0.023244/1.49 = 0.0156 < 0.1 
 

where RI is the random index, and it depends on 

the number of responses. 

If the value of CR is less than 0.1, then it denotes 

the decision made by the author is correct, and 

error is less than 10%, and it is acceptable. The 

values of RI are given in table 14. 

 

 

Table 14. Values of RI. 
 

Responses 3 4 5 6 7 8 9 10 

RI 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 

 

Table 15. Priority matrix for relative importance of responses. 
 

Responses BTE BSFC EGT CP NHR RPR CO HC NOx 
Smoke 

(HSU) 

10th 

root of 

product 

Priority 

vector 

(PV)= 

Weights 

BTE 1 2 9 3 1 3 9 9 9 9 4.0054 0.25 

BSFC 1/2 1 7 2 1/2 2 7 7 7 7 2.6458 0.16 

EGT 1/9 1/7 1 1/6 1/9 1/6 1 1 1 1 0.3707 0.02 

CP 1/3 1/2 6 1 1/3 1 6 6 6 6 1.8346 0.11 

NHR 1 2 9 3 1 3 9 9 9 9 4.0054 0.25 

RPR 1/3 1/2 6 1 1/3 1 6 6 6 6 1.8346 0.11 

CO 1/9 1/7 1 1/6 1/9 1/6 1 1 1 1 0.3707 0.02 

HC 1/9 1/7 1 1/6 1/9 1/6 1 1 1 1 0.3707 0.02 

NOx 1/9 1/7 1 1/6 1/9 1/6 1 1 1 1 0.3707 0.02 

Smoke(HSU) 1/9 1/7 1 1/6 1/9 1/6 1 1 1 1 0.3707 0.02 

SUM 3.7222 6.7143 42 10.8333 3.7222 10.8333 42 42 42 42 16.1793 1 

SUM*PV 0.9215 1.0980 0.9623 1.2284 0.9215 1.2284 0.9623 0.9623 0.9623 0.9623 10.2092  

Using the priority matrix, the calculated weights 

for each of the responses are as follows: BTE = 

0.25, BSFC = 0.16, EGT = 0.02, CP = 0.11, NHR 

= 0.25, RPR = 0.11, CO = 0.02, HC = 0.02, NOx 

= 0.02, Smoke = 0.02. 
 

 

4.3 Calculation of weighted normalized matrix (Vij) 

After calculation of normalized decision matrix 

and weights for all the attributes, the weighted 

normalized matrix is calculated using the 

following equation and tabulated in table 15. 

ij j ijV w N

 

Table 16. Weighted normalized matrix. 
 

Alt. 
Attributes 

BTE BSFC EGT CP NHR RPR CO HC Nox Smoke 

1 0.0610 0.0890 0.0030 0.0422 0.0523 0.0160 0.0067 0.0125 0.0077 0.0074 

2 0.0702 0.0757 0.0036 0.0405 0.0545 0.0151 0.0066 0.0125 0.0092 0.0097 

3 0.0762 0.0757 0.0041 0.0417 0.0658 0.0273 0.0129 0.0176 0.0107 0.0176 

4 0.0723 0.0757 0.0033 0.0531 0.0697 0.0391 0.0042 0.0075 0.0095 0.0063 

5 0.0749 0.0734 0.0039 0.0541 0.0688 0.0361 0.0085 0.0105 0.0106 0.0131 

6 0.0662 0.0823 0.0027 0.0518 0.0587 0.0292 0.0054 0.0068 0.0074 0.0056 

7 0.0841 0.0668 0.0034 0.0645 0.0607 0.0407 0.0027 0.0044 0.0135 0.0087 

8 0.0694 0.0801 0.0026 0.0623 0.0556 0.0326 0.0028 0.0041 0.0086 0.0072 

9 0.0826 0.0690 0.0029 0.0630 0.0504 0.0216 0.0031 0.0051 0.0114 0.0084 
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Next step is to calculate the ideal best an ideal 

worst solution using the following equations: 
 

   

   

'

'

max ,min

min ,max

j ij j ij

j ij j ij

V V j V j

V V j V j





  

  

J J

J J
 

 

where I = 1, 2,…..m indicates the alternatives and 

j = 1, 2, . . . n  are the attributes. 

The term J used for beneficial term, i.e. larger the 

better and J
’ used

 for non-beneficial terms (smaller 

the better). Using these equations and conventions 

the ideal best and ideal worst is calculated for 

each attributes and tabulated in the table 17. 
 

Table 17. Calculated ideal best (V+) and ideal worst (V-). 
 

 
BTE   BSFC  EGT CP   NHR  RPR CO  HC      NOx  Smoke    

V+ 0.0841 0.0668 0.0026 0.0645 0.0697 0.0407 0.0027 0.0041 0.0074 0.0056 

V- 0.0610 0.0890 0.0041 0.0405 0.0504 0.0151 0.0129 0.0176 0.0135 0.0176 

  

4.4 Calculation of separation variables 

The separation variable indicates its Euclidean 

distance from the ideal solutions for each 

alternative. These variables are calculated using 

the below given equations. 

 

 
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 
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 
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Table 18 shows the calculated separation variables 

for each alternative. 
 

Table 18. Separation variables. 
 

Alt. S+ S- 

1 0.050258 0.014477 

2 0.042929 0.020634 

3 0.036049 0.028407 

4 0.019162 0.041707 

5 0.02004 0.038673 

6 0.031437 0.028697 

7 0.011324 0.052182 

8 0.025779 0.03711 

9 0.027789 0.041907 
 

The relative closeness Pi of each alternative has 

been calculated using the following equation and 

tabulated in table 19. Based on the value of 

relative closeness, the alternatives are ranked in 

descending order for the value of Pi . 
 

 
i

i

i i

S
P

S S



 



 

 

Table 19. Relative closeness of alternatives. 
 

Alt. Pi Rank 

1 0.22364 9 

2 0.324625 8 

3 0.440723 7 

4 0.685191 2 

5 0.658678 3 

6 0.477218 6 

7 0.821683 1 

8 0.590088 5 

9 0.601279 4 

Finally, the ranking of TOPSIS alternatives has 

been compared with GTM and depicted in Table 

20. It is found that the optimal solution is same in 

the both the technique and confirms the results. 
 

Table 20. Ranking comparison of GTM and TOPSIS. 
 

Expt. No. 1 2 3 4 5 6 7 8 9 

GTM 8 9 4 3 2 7 1 6 5 

TOPSIS 9 8 7 2 3 6 1 5 4 

 

5. Results and Discussion  
 

5.1 Signal to noise ratio analysis for GRG  
The Taguchi method is used for analysis of grey 

relation grade obtained by GM the optimization 

technique. The signal to noise ratio of GRG 

calculated by using the ‘larger the better' design 

condition represented by equation 3. The S/N ratio 

of input factors and their levels are given table 21. 

Similarly, figure 4 shows the graphical 

representation of S/N ratio of GRG for input 

elements. The inferences have drawn from table 

12 and figure 4, about optimal combination of 

input factors A1B2C3, i.e. fuel blend B10, CR 16, 

and load 100% for improved performance 

characteristics. 
 

Table 21. Signal to noise ratios for GRG. 
 

Level Fuel CR Load 

1 -4.443 -6.191 -6.207 

2 -5.608 -4.471 -5.393 

3 -5.175 -4.564 -3.626 

Delta 1.165 1.72 2.581 

Rank 3 2 1 

 

 
 

Figure 4. S/N ratio for grey relational GMde (GRG) 
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5.2 Analysis of variance 
For analyzing the effect of input factors on output 

responses quantitatively, the statistical tool 

analysis of variance (ANOVA) has been used at 

95% confidence level. The ANOVA distributes 

the total variability in responses, among the 

available factors. This investigation recognizes the 

factor whose effect is significant on the output 

responses and quantifying the effect of the factor 

regarding percentage contribution [52,53]. The 

various terms used for analysis of variance  

namely sum of squares (SS), mean square (MS), 

and F-value [54] calculated by using the below 

given equations, and the results are depicted in 

table 22. 
 

 
2

1

n

i m

i

SS  


 
 

 

SS
MS

DF
  

 

where 𝛾𝑖 is the GRG for i
th
 experiment and 𝛾𝑚 is 

the mean of GRG. The value of F is calculated by 

taking the ratio of factor MS to the error mean 

square. The percentage contribution is the ratio 

factor SS to total SS. 

The analysis of variance of grey relational grade 

has been performed, and the results depict in table 

18. The ANOVA result shows the most significant 

factor is load whose contribution for variation of 

output responses is 52.82%, followed by the CR 

(28.38%), and fuel (10.52%). This result implies 

that by controlling the load and CR, the 

performance parameters can be varied and 

improved. 
 

Table 22. Analysis of variance for S/N ratios. 
 

Source DF Seq SS Adj MS F 
Contribution 

(%) 

Fuel 2 2.081 1.0405 1.27 10.52 

CR 2 5.614 2.8071 3.42 28.38 

Load 2 10.449 5.2244 6.37 52.82 

Residual 

 Error 
2 1.639 0.8197 

 
8.28 

Total 8 19.784 
  

100 

 

5.3 Experiments for confirmation test  
The initial optimal settings of variable 

compression ratio diesel suggested by the 

manufacture are fuel petrodiesel, CR 17.5, and 

load 80. Then at initial settings of engine, the 

GRG (0.521) and S/N ratio (- 3.4525) are 

represented in table 14 and compared with 

predicted and experimental optimized factor level 

results. 

After getting, the optimal input factor levels from 

the S/N ratio plots, the grey relational GMde   is 

predicted at the optimal input factor by Equation 

10. 

 
1

n

m i m

i

   


     (10) 

Using equation 10, the predicted grey relational 

grade at optimal input factor level A1B2C3  is 

0.8429 and corresponding S/N ratio is -1.4845 

tabulated in table 14.  Also at the same optimal 

level, confirmation experiment has been 

conducted and the results are reproduced. From 

the results, it is inferred that the improvement in 

GRG with linseed biodiesel blend is 0.2922, i.e. 

56.1% as compared to the existing initial setting 

of variable compression ratio diesel engine. The 

optimal combination of input parameters shows 

the improvement in performance, combustion, and 

emission parameters justifying the application of 

Taguchi with GM. 
 

Table 23.  Results of existing and optimal setting of 

input factors. 
 

  

  

Initial process  
parameters  

Optimal process  
parameters  

Existing VCR  

engine setting 
Predicted   Experimental  

Level 
 

A1B2B3 A1B2C3 

 GRG 0.521 0.8429 0.8132 

 S/N ratio  -3.4525 -1.4845 -2.38936 

Improvement in GRG    =  (0.8132-0.521)= 0.2922 

 

5.4 Performance of index (pi) of TOPSIS 
Taguchi's OA, i.e. arrangement of factors and 

levels in minimum number of experiment taken as 

the alternatives and corresponding set of output 

parameters as attributes (responses). This OA has 

been analyzed using TOPSIS for selecting the best 

option. The performance index pi for TOPSIS 

calculated and it show the best alternative is 7. 

This 7
th
 choice has a combination of B10, CR18, 

and load 100% and this optimum result exactly 

matching with GTM. 

 

6. Conclusion 
In the variable compression ratio diesel engine, 

the performance, combustion, and emission 

characteristics are affected by the input factor fuel 

blends, compression ratio, and applied load on the 

engine. In the present study to obtain the defined 

objective the Taguchi method of analysis was 

integrated with grey relational analysis and 

analytical hierarchy process. The hybrid technique 

GTM used to identify the best combination of 

input factor levels for improved performance 

characteristics in minimum number of trials. In 

designing of experiment the GTM method is 

useful, since it reduces the time to perform the 
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experiments by suggesting the optimal 

combination of factors in lesser number of tests. 

The following conclusions were drawn:  
 

1. In the study, the optimal combination are 

fuel blend B10, compression ratio 18 and load 

on the engine is 100% for better performance 

and combustion and reduced emission. The 

optimum factor level effects observed by these 

techniques are fuel blend B10 and compression 

ratio 16 and load 100%.  
 

2. The ANOVA analysis for grey relational 

grade shows the most influencing factor is load 

with contribution of 52.28% followed by the 

factor CR of 28.38% and least effect of fuel 

blend of contribution only 10.52%.  
 

3. The confirmation test shows the 

improvement in performance by 56.1% as 

compared to the existing setting of engine for 

fuel as petro diesel. This confirms the 

advantage of GTM techniques for 

optimization. 
 

4. The GTM results also confirmed by 

Taguchi-TOPSIS for the optimal level of the 

factor. This means hybrid method of 

optimization can be used effectively. 

 

7. Future suggestions 

Based on this experimental and parametric 

optimization study, the existing engine’s 

feasibility can be studied further for other 

available vegetable oil based alternative fuels.  
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9. Nomenclature and abbreviations  

ANOVA Analysis of variance 

BSFC Break specific fuel consumption 

bTDC Before top dead centre  

BTE, Break thermal efficiency  

B-XX 

(e.g.B10) 

B-biodiesel blend, XX- percentage of 

biodiesel  

CI Consistency index 

CNG  Compressed natural gas  

CO Carbon monoxide 

CP Combustion pressure 

CR Compression ratio / consistency ratio 

DF Degree of freedom 

DOE Design of experiments 

EGR  Exhaust gas recirculation  

EGT Exhaust gas temperature 

GRG Grey relational grade 

GTM Grey Taguchi method 

HC Hydrocarbon 

IP Injection pressure  

LPG Liquid petroleum gas  

MS Mean square 

NHC Net hydrocarbons 

NOx Nitrogen oxide 

PSO particle swarm optimization 

PV Priority vector 

RI Random index 

RPR Rate of pressure rise  

S/N Signal to noise ratio 

SS Sum of square 

TOPSIS 
Techniques for order preference by 

similarity to ideal solution 

VCR  Variable compression ratio 

 

Greek symbols  

mijk 
Simulation result for trial i for response j , 

in k
th

 number of replication 

S
+ 

, S
-
 Separation variables 

V
+ 

, V
- 
 Ideal best  and ideal worst  

Vij Weighted normalized matrix 

wj Weighting factor 

γi Grey relational grade 

ζ Distinguishing coefficient 

 ijη  
S/N ratio of experiment number i for 

response j 

 Grey relational generation 

  Grey relational GMde 
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