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Abstract 

Medium and long-term photovoltaic (PV) power forecasting is crucial for the planning and management of 

new energy grids. Existing methods often suffer from limited processing capabilities and low prediction 

efficiency. To address these challenges, this paper proposes a Transformer-based approach called SP-

Transformer (Spatiotemporal-ProbSparse Transformer), designed to capture spatiotemporal correlations 

between meteorological, geographical, and PV power data. The model incorporates geographical location 

information through spatiotemporal position encoding and employs a spatiotemporal probability sparse self-

attention mechanism to enhance correlation capture while reducing complexity. Additionally, a feature 

pyramid-based self-attention distillation module is introduced to improve the model’s ability to generalize 

complex patterns in medium and long-term forecasting. Experimental results demonstrate that SP-

Transformer achieves 93.8% accuracy for forecasting PV power over the next 48 hours and 90.4% for 336 

hours, outperforming all comparative algorithms. 

 

Keywords: PV power forecasting, Medium and Long term forecasting, Transformer, Attention mechanism, 

Feature pyramid self-attention distillation. 

1. Introduction 

Medium and long-term photovoltaic (PV) power 

forecasting refers to the prediction of electricity 

generation by photovoltaic power systems over a 

period ranging from several days to months or 

even longer. It plays a significant role in energy 

planning, power system operations, and energy 

investment [1]. Compared to short-term PV power 

forecasting, medium and long-term PV power 

exhibits cyclical variation. Typically, the 

photovoltaic power curve changes in a similar 

trend every day, showing a daily cyclicality. 

Moreover, with the change of seasons, the 

variation in solar elevation angle and daylight 

duration also affects the output of photovoltaic 

power, presenting a seasonal cyclical change. 

Medium and long-term forecasting requires 

consideration of a longer time range and a larger 

spatial scale, which necessitates the model to have 

more complex spatiotemporal feature capturing 

capabilities [2]. At the same time, considering the 

differences in geographical locations, the 

forecasting model needs to adapt to 

meteorological differences in different regions. 

Current photovoltaic power forecasting methods 

mainly include statistical methods [3], machine 

learning methods [4], and deep learning methods 

[5]. Traditional statistical methods provide 

intuitive explanations of the relationships between 

power and various influencing factors, which 

helps to deeply understand the main factors 

affecting power fluctuations [6]. These methods 

perform well on smaller-scale and shorter time-

span datasets, suitable for many scenarios in 

practical applications [7]. However, statistical 

methods are usually based on linear assumptions, 

making it difficult to capture complex nonlinear 

relationships. They also have higher requirements 

for data quality and sampling frequency, and their 

response to potential emergencies or uncertain 

factors that may arise in the future is relatively 

poor [8]. Therefore, statistical methods have 

certain limitations when dealing with medium and 

long-term PV power forecasting tasks. 

Machine learning methods, trained on a vast 

amount of historical data, can automatically adapt 

to the nonlinear and complex relationships in 

photovoltaic power forecasting tasks, exhibiting 

good generalization capabilities [9]. These 

methods are widely applied in photovoltaic power 

forecasting tasks. Typically, machine learning 
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methods require a large volume of data for 

training and tuning, especially in medium and 

long-term forecasting where more time series data 

and related variables need to be considered, 

involving substantial computational resources 

[10]. Moreover, machine learning methods carry 

the risk of overfitting when dealing with large-

scale data [11], which is particularly prominent in 

medium and long-term PV power forecasting. 

Deep learning models such as RNN (Recurrent 

Neural Network) and LSTM [12] (Long Short-

Term Memory) possess memory capabilities, 

enabling them to consider contextual information 

in time series data, such as seasonal variations and 

cyclical trends, thereby better predicting the 

changes in photovoltaic power generation in the 

medium to long term [13]. Deep learning 

methods, through their multi-layered neural 

network structures, can capture complex nonlinear 

relationships in photovoltaic power and 

effectively learn spatiotemporal features, better 

handling the impact of multidimensional factors 

such as illumination, meteorology on photovoltaic 

power, enhancing the model’s adaptability to the 

dynamic changes of photovoltaic power systems, 

and thereby improving forecast accuracy [14]. 

However, researchers have found in recent years 

that deep learning methods like RNN and LSTM 

do not perform ideally when dealing with long-

term dependencies in time series data [15]. As a 

neural network based on recurrent structures, 

LSTM’s computation process is sequential, with 

each time step depending on the results of the 

previous time step. This makes effective parallel 

computation difficult during training, thus limiting 

the model’s training speed. Moreover, when 

dealing with extremely long sequences, LSTM 

may face the issue of error accumulation. 

Additionally, the variation in photovoltaic power 

is not only influenced by time series factors but 

also by various meteorological factors such as 

light exposure, temperature, wind speed, etc. 

Although LSTM can capture complex 

relationships in time series, it may not effectively 

extract and integrate this multi-dimensional 

feature information. 

Existing photovoltaic power forecasting methods 

are mostly designed for short-term predictions 

[16], and their performance often falls short in 

medium and long-term forecasting [17]. The 

Transformer captures long-term dependencies in 

sequences through its self-attention mechanism, 

allowing the model to focus on all other positions 

when processing each position, unlike RNN and 

LSTM which need to process in a sequential order 

by time steps. This makes the Transformer more 

efficient in training and inference for long 

sequence data. In recent years, Transformer 

models have been widely applied to medium and 

long-term PV power forecasting tasks. For 

instance, Ran et al [18] proposed a hybrid model 

that combines adaptive noise, complete ensemble 

empirical mode decomposition, sample entropy, 

and Transformer. This model addresses the long 

memory loss issue by introducing an attention 

mechanism and combines empirical mode 

decomposition techniques with the Transformer to 

verify the final impact of different mode 

decomposition techniques on forecasting results. 

The aforementioned methods only use time series 

data for photovoltaic power forecasting, without 

considering the impact of meteorological and 

geographical factors on photovoltaic power. The 

lack of support for geographical location and 

meteorological information can lead to poor 

performance in perceiving the spatiotemporal 

characteristics of the data. Zhang et al [19] 

proposed a new Transformer model for power 

grid load forecasting, which combines 

Transformer and graph convolutional networks, 

using a feedforward neural network to output the 

predicted load values. The aforementioned 

methods use global self-attention mechanisms for 

medium and long-term PV power forecasting. The 

global self-attention mechanism treats all input 

sequence information as equally important, which 

can cause the model to overlook local features and 

changes, wasting a large amount of computational 

resources on processing spatiotemporal data with 

little impact on forecasting, increasing the 

model’s complexity and computational costs. Cao 

et al [20] proposed an LSTM-Informer model 

based on an improved Stacking ensemble 

algorithm. This model utilizes long short-term 

memory and Informer as the base models and 

improves the traditional k-fold cross-validation in 

the Stacking algorithm to time series cross-

validation, integrating time series forecasting 

models. The aforementioned methods use a 

stacked multi-layer structure of identical encoder-

decoder structures to process feature information, 

which can lead to an excessive number of model 

parameters. When dealing with large-scale 

spatiotemporal data, this structure is prone to 

overfitting, reducing the model’s ability to capture 

potential patterns in complex data, and limiting 

the model’s performance and generalization 

ability in medium and long-term forecasting tasks. 

Compared to traditional statistical methods and 

machine learning methods, Transformer models 

have certain advantages in medium and long-term 

time series forecasting tasks, but they still face 
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certain challenges when predicting photovoltaic 

power. The position encoding of Transformer 

models can only capture temporal information and 

cannot fully consider the impact of extensive 

meteorological and geographical factors on 

photovoltaic power. The self-attention mechanism 

of Transformer models has excessive 

computational complexity when processing 

medium and long-term PV power data. 

Photovoltaic power data not only has time series 

characteristics but is also affected by geographical 

location and meteorological conditions. Therefore, 

a model is needed that can capture this 

spatiotemporal correlation. In response to the 

above issues, this paper proposes a Transformer-

based medium and long-term PV power 

forecasting model called SP-Transformer 

(Spatiotemporal-ProbSparse Transformer). 

The main contributions of this paper are as 

follows: 

 To address the issue of weak spatiotemporal 

correlation in medium and long-term PV 

power data, this paper introduces a 

spatiotemporal position encoding method. By 

embedding encoded vectors containing site 

spatial information into the input time-series 

meteorological data, the model can more 

accurately capture the spatiotemporal 

dependencies between sites. This method 

uses timestamps to represent different 

temporal positions and incorporates latitude 

and longitude as spatial position encodings, 

revealing the relative spatial relationships 

between sites. This approach significantly 

enhances the model’s ability to perceive 

spatiotemporal associations in photovoltaic 

power data, demonstrating better adaptability 

in scenarios with significant spatial 

distribution and climatic condition 

differences. 

 To resolve the challenges of inefficiency and 

insufficient correlation capture stemming 

from data redundancy in medium and long-

term forecasting, this paper proposes a 

Spatiotemporal-ProbSparse Self-Attention 

mechanism. This mechanism not only 

reduces the computational load but also 

enhances the utilization of spatiotemporal 

correlations. By introducing the Haversine 

distance measure and a probability sparse 

strategy, the mechanism identifies "active 

points" in the spatiotemporal dimension, 

reducing computational expenditure on 

"nonactive points", thereby improving the 

accuracy and efficiency of photovoltaic 

power forecasting. This mechanism provides 

a more efficient solution for medium and 

long-term forecasting tasks. 

 In response to the inefficiencies encountered 

in medium and long-term photovoltaic power 

forecasting, this paper introduces a Feature 

Pyramid Self-Attention Distillation Module 

(FPSA) that precisely captures potential 

patterns within photovoltaic power data. This 

approach constructs a multi-level feature 

pyramid structure through deep separable 

convolutions across various scales, providing 

an extensive receptive field to aid the model 

in understanding complex patterns, ensuring 

efficient feature extraction and complete 

information transfer. The FPSA achieves 

efficient feature extraction in complex 

environments and can be widely applied to 

medium and long-term forecasting tasks, 

enabling efficient mining of temporal 

information. 

 

2. Method 

To effectively capture the spatiotemporal 

correlations between meteorological and 

geographical elements and photovoltaic power 

data in medium and long-term forecasting, this 

paper proposes a Transformer-based medium and 

long-term PV power forecasting model, the 

SpatiotemporalProbSparse Transformer (SP-

Transformer), aimed at enhancing the accuracy 

and efficiency of medium and long-term PV 

power forecasting. The overall architecture of the 

model is shown in figure 1. 

The SP-Transformer model enhances its ability to 

capture the complex spatiotemporal correlations 

in photovoltaic power data through the 

mechanism of spatiotemporal position encoding. 

This encoding provides the model with crucial 

information about the geographical locations of 

sites, thereby improving its capability to capture 

more intricate spatiotemporal features. With 

spatiotemporal position encoding, the model can 

gain deeper insights into the interdependencies 

between different sites, offering richer contextual 

information for forecasting tasks. To further 

reduce the model’s time and space complexity 

while maintaining predictive accuracy and 

stability, the SP-Transformer model also 

incorporates a spatiotemporal probability sparse 

self-attention mechanism. This mechanism 

selectively focuses on areas that have a key 

impact on the forecasting task, capturing the 

spatiotemporal correlations in the input data more 

effectively while reducing model complexity. This 

mechanism allows the model to improve 

predictive accuracy at a more efficient 
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computational complexity and enhances its 

adaptability to large-scale photovoltaic power 

data. The SP-Transformer model utilizes a feature 

pyramid self-attention distillation mechanism, 

which reduces information loss and enhances 

model stability through multi-scale feature 

extraction and fusion. This enables the model to 

consider spatiotemporal features at various scales 

more comprehensively, thus better adapting to 

different forecasting scenarios. The introduction 

of self-attention distillation helps ensure that the 

model maintains accuracy and consistency with 

input data in long-term forecasting tasks. 

 

 
Figure 1. Overall Architecture of SP-Transformer. 

 

2.1. Spatiotemporal position encoding  

In the Transformer model, position encoding is 

used to handle positional information within input 

sequences, as the Transformer lacks explicit 

sequencing like Recurrent Neural Networks 

(RNNs) or Long Short-Term Memory networks 

(LSTMs). Without position encoding, the 

Transformer would not be able to distinguish 

between words or tokens at different positions in 

the input sequence, as it is an attention-based 

model that focuses on the content of the input 

rather than its position. Position encoding allows 

the Transformer to take into account the relative 

position of each element in the sequence, but this 

is limited to one-dimensional sequences. In the 

medium and long-term photovoltaic power 

forecasting task, the position encoding in the 

Transformer can only consider the sequential 

information along the temporal dimension and 

cannot account for the relative positions of 

different nodes in the spatial dimension. 

To enable the model to further extract the relative 

spatial position information of different 

photovoltaic sites, this paper adds spatial position 

encoding to the input sequence on this basis. The 

input vector of the model is obtained by summing 

the scalar projection, local time stamp, global time 

stamp, and spatial position encoding, as shown in 

equation (1): 

 

   
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  

  
 

X

 (1) 

 

where 
t

iu
 represents the scalar projection, and   

is a factor that balances the size of the scalar 

projection with other encodings. If the input 

sequence has already been normalized, then 1  . 

The scalars in this paper include historical 

photovoltaic power, temperature, humidity, 

horizontal wind speed, vertical wind speed, wind 

direction, cloud water content, cloud ice content, 

and solar irradiance. PE stands for the local time 

stamp, SE for the global time stamp, and SSE for 

the spatial position encoding. t  represents the 

moment, xL  is the length of the input scalar 

sequence, i  is the current position, and p  is the 

global time stamp. The structure of the 

spatiotemporal position encoding is shown in 

figure 2. 

Local time stamp refers to the position encoding 

of Transformer, as shown in equation (2, 3): 
 

  model 2 /

( ,2 )PE sin / 2
j d

pos j xpos L  (2) 

  

  model 2 /

( ,2 1)PE cos / 2
j d

pos j xpos L   (3) 
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where pos represents the position of the data point 

at the current moment, 2 j  denotes even points, 

2 1j   denotes odd points, and modeld  refers to the 

dimensionality of the input sequence features. 

The global time stamp selects hierarchical 

timestamps, which helps to enhance the model’s 

ability to capture long-range dependencies. 

Considering that photovoltaic power is minimal 

during the night and early morning, this paper 

selects data from 8:00 to 18:00 each day as input. 

Additionally, since photovoltaic power generation 

is primarily influenced by seasonal changes and 

the alternation of day and night, the impact of 

annual, monthly, and daily time features on 

photovoltaic power is not significant. Therefore, 

this paper chooses season and hour as the global 

time stamps. 

This paper selects latitude and longitude 

coordinates as spatial position encoding. The 

geographical location of photovoltaic stations 

affects variables such as daily sunlight duration 

and the angle of solar incidence. By introducing 

latitude and longitude coordinates, the model can 

better capture the differences in geographical 

locations, thereby more accurately reflecting 

changes in solar radiation and other factors. 

Spatial position encoding helps the model capture 

spatial correlations. Adjacent stations may have 

similar lighting and weather patterns, and this 

correlation can be better modeled through spatial 

position encoding. The model can take into 

account the spatial relationships between stations, 

thereby more accurately predicting future power 

outputs. 

 

 
 

Figure 2. The structure of Spatiotemporal Position Encoding. 
 

2.2. Spatiotemporal probability sparse self-

attention mechanism  
The self-attention mechanism of the Transformer 

model leads to high computational complexity 

when dealing with long sequences, as it requires 

calculating attention weights with all other 

positions for each position. The computational 

complexity increases exponentially when 

processing long sequence data, reducing the 

efficiency of handling long sequences. However, 

not all data points are closely related. To enable 

the model to better extract key information, this 

paper proposes a Spatiotemporal-ProbSparse self-

attention mechanism, which selects some active 

data points in the input sequence along the 

spatiotemporal dimension to calculate attention, 

thereby reducing the overall computational cost. 

This allows the model to focus more on the key 

parts of the sequence without being distracted by 

unnecessary information. 

Adjacent photovoltaic power stations are typically 

influenced by similar meteorological conditions 

and environmental factors, such as similar terrain 

and solar incidence angles. By leveraging the 

power data from nearby stations, the model can 

learn these shared pieces of information, thereby 

better capturing spatial correlations. This paper 

proposes the Spatiotemporal-ProbSparse self-

attention mechanism to select nearby active points 

of photovoltaic power stations in the spatial 

dimension. The specific equation is as follows: 
 

( ,

1

( , ) , )-

L

i j

j

i j i j

d

D d
L




 ）

（  
(4) 
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where d  represents the distance between two 

photovoltaic sites, r  is the average radius of the 

Earth, ilon , ilat  are the longitude and latitude of 

the target site, and jlon
, jlat

 are the longitude and 

latitude of the selected site. L  denotes the total 

number of photovoltaic power stations. D  is 

defined as the difference between the mean 

distance of the target site to all other sites and the 

distance from the target site to the selected site. If 
D  is greater than 0, the selected site is considered 

an active point that may influence the 

photovoltaic power forecasting of the target site. 

Global attention is calculated for the photovoltaic 

power data of the selected active points and the 

target site at each moment, resulting in 

photovoltaic power data that takes into account 

spatial location information. 

The traditional Transformer model utilizes self-

attention mechanisms with a time complexity of 

 2O L
, which leads to high memory consumption 

and low computational efficiency when 

processing long sequence data. The ProbSparse 

selfattention mechanism addresses this issue by 

calculating the difference between the target 

point’s attention distribution and a uniform 

distribution, thereby identifying points that 

significantly contribute to the attention 

computation while ignoring others. This approach 

reduces the time complexity of the Transformer 

model from O(L
2
) to O(L*ln(L)), 
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-   -  2 22r arcsin sin cos   cos   sin
2 2

j i j

j

i

i

lat lat lon lon
d lat lat

i j

              
      

 (5) 

substantially enhancing the model’s performance 

in predicting long sequence data. The ProbSparse 

self-attention mechanism utilizes the Kullback-

Leibler (KL) divergence to measure the 

discrepancy between the attention probability 

distribution and the uniform distribution. The 

specific equation is as follows: 
 

 
1

1
, max

KL
i j i j

i j

jK

q k q k
M q K

Ld d

  
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  


• •

 (6) 

 

Where q  represents the query, K  represents the 

Key, KL  represents the total number of keys, and 

 ,iM q K
 represents the sparsity measure for the 

i-th query. If the 
 ,iM q K

 for the i-th query is 

large, it is considered to contribute more to the 

attention. Selecting several points with the largest 

 ,iM q K
 can approximate the attention 

probability distribution. The final equation for the 

Spatiotemporal-ProbSparse attention calculation 

is: 
 

( ) SoftmaxA
d

 
  

 

QK
Q,K,V V

•

 (7) 

 

where Q̅ is a sparse matrix that contains only u 

queries selected by the Spatiotemporal-

ProbSparse attention mechanism, with other 

points filled with zeros, where 
*ln Qu c L

 and c  

is a constant sampling factor. The 

SpatiotemporalProbSparse self-attention 

mechanism selects active points on both spatial 

and temporal dimensions, thereby limiting the 

model’s complexity to 
 *lnK QO L L

. This 

approach not only captures the spatiotemporal 

correlations within the input data more effectively 

but also focuses on regions that are critical for the 

prediction task, thereby enhancing the prediction 

accuracy with a more efficient computational 

complexity. This design makes the model more 

adaptable to large-scale photovoltaic power data, 

enhancing its feasibility in practical application 

scenarios. 

 

2.3. FPSA 

After the input sequence passes through the 

SpatiotemporalProbSparse attention layer to 

obtain sparse features, redundant values are 

inevitably present in the feature map. To highlight 

key features and further reduce the computational 

load of the model, feature distillation is an 

effective method. Some existing models use max-

pooling to reduce the dimensionality of the 

attention block, and in the stacked Encoder, the 

input sequence is halved with each additional 

layer, finally connecting the outputs of all layers 

to obtain the feature map. However, max-pooling 

retains only the maximum value and ignores other 

information; other sub-maximal feature values 

may also contain important information, and 

directly downsampling the input sequence can 

lead to the loss of a significant amount of long-

term dependency information. Therefore, this 

paper proposes a Feature Pyramid Self-Attention 

Distillation Module (FPSA) to better extract 

dominant key features, as shown in figure 3. 
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In this figure,  represents the input scalar,  denotes 

the length of the time series, n refers to the 

number of multi-head attention heads, and  

indicates the number of encoder layers. For the 

original input sequence, downsampling is applied 

starting from the stacked second layer of the 

Encoder using Depthwise Separable Convolution, 

with each layer employing convolution kernels of 

different sizes that increase with the layer number. 

By utilizing multi-scale convolution along the 

temporal dimension, the network is enabled to 

focus on temporal information of varying lengths. 

In the channel dimension, a 1×1 convolution is 

employed to extract cross-features among 

different elements, thereby enriching the 

network’s receptive field and allowing for a more 

comprehensive understanding of the structure and 

content of the input sequence. The multi-level 

convolutional network can learn more abstract and 

high-level features, which aids the network in 

establishing an understanding of complex patterns 

and objects. Furthermore, downsampling through 

convolution is applied to the attention blocks in 

each Encoder layer. Compared to max-pooling, 

convolution can more effectively capture local 

features of the input data. By stacking multiple 

convolutional and pooling layers, the model can 

adapt to feature data of varying scales and learn 

deeper hierarchical representations of the data. 

The feature pyramid self-attention distillation 

process is shown in the equation (8). 
 

1 ABELU(DSConv([ ] ))i i

j j X X  (8) 
 

where  represents the number of Encoder layers, j 

denotes the number of distillation layers within 

each Encoder,  indicates the self-attention block 

operation, DSConv refers to depthwise separable 

convolution, and ELU is the activation function. 

Through the distillation process, the model can 

extract key features from the stacked multiple 

Encoders while reducing redundant information. 

Finally, the outputs of the stacked Encoders are 

concatenated along the channel dimension to form 

the output of the Encoder. The feature map 

produced by the Encoder is then processed 

through two stacked Decoder layers to obtain the 

final photovoltaic power prediction value. 

 

 
Figure 3. The structure of FPSA. 

 

3. Experiment 

 

3.1. Dataset 

The dataset used in this study includes 

photovoltaic The dataset used in this study 

includes photovoltaic power data and 

meteorological data, covering the period from 

March 2022 to February 2023. In the dataset, 70% 

of the data is allocated to the training set, 20% to 

the testing set, and the remaining 10% to the 

validation set. To eliminate instances of nearly 

zero photovoltaic power during nighttime, this 

study selected data only from 8 AM to 6 PM each 

day. The photovoltaic power data is sourced from 

the open dataset provided by the Belgian 

electricity supplier Elia. This paper utilized 

meteorological data from the WRF model 

provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF), which 

includes information on temperature, humidity, 

wind speed, wind direction, cloud water content, 

cloud ice content, and solar irradiance. The 

meteorological data has a temporal resolution of 1 

hour and a spatial resolution of 1 kilometer. 
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3.2. Experimental setup and scheme 

The experimental setup used in this study features 

an Intel(R) Core(TM) i9-10900X processor, 32GB 

of RAM, and an NVIDIA GeForce GTX 2080 Ti 

GPU, with Ubuntu 18.04 as the operating system. 

The environment is configured to run PyTorch 

version 3.6. The training process employs the 

Adam optimizer, with all models trained for 100 

epochs. The batch size is set to 64, and the initial 

learning rate is set to 0.001. 

 

3.2.1. Comparative experimental setup  

To evaluate the performance of the model in the 

photovoltaic power prediction task, this paper 

compared it with several common time series 

forecasting methods, including LSTM, 

Transformer [21], Log Transformer [22], Informer 

[23], and Fedformer [24]. To ensure fairness in 

the experiments, the dataset was split into training 

and testing sets. After the model training was 

completed, each model was applied to the testing 

set, and their performance in the photovoltaic 

power prediction task was assessed. This study 

utilized Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) to compare the 

prediction effectiveness of the various models. 

 

3.2.2. Ablation experimental setup  

To validate the effectiveness of each module in 

the model, this study conducted ablation 

experiments, systematically removing specific 

components and observing their impact on overall 

performance. The complete SP-Transformer, 

which includes all modules, served as the baseline 

model. In Model 1, the spatiotemporal positional 

encoding was replaced with sequential positional 

encoding. In Model 2, the spatiotemporal 

probabilistic sparse self-attention mechanism was 

substituted with a global self-attention 

mechanism. In Model 3, the feature pyramid-

based self-attention distillation decoder was 

replaced with the decoder structure from the 

Transformer. RMSE and MAE were utilized to 

evaluate the prediction performance of each 

model. 

 

3.3. Evaluation metrics 

This study employs RMSE and MAE as two 

metrics to evaluate the performance of the 

photovoltaic power prediction model. The 

equations for RMSE and MAE are as follows: 
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where 𝑦𝑡̂ represents the predicted photovoltaic 

power at time t, yt denotes the actual photovoltaic 

power at time t, and N is the number of samples. 

 

3.4. Experimental results 

 

3.4.1. Comparative experimental results  

To validate the advantages of the proposed SP-

Transformer in the photovoltaic power prediction 

task, this study compared the prediction results of 

SP-Transformer with several common time series 

forecasting methods, including LSTM, 

Transformer, LogTransformer, Informer, and 

FEDformer. The prediction time steps were 

gradually extended to assess the performance of 

each model in long sequence prediction tasks. 

The RMSE values of the photovoltaic power 

prediction results from the aforementioned 

methods on the testing set are visually represented 

in figure 4. From the figure, it can be observed 

that as the prediction time steps are extended, 

most models begin to exhibit significant 

deviations in their predictions. However, the SP-

Transformer, utilizing the spatiotemporal 

probabilistic sparse self-attention mechanism, is 

better able to capture the spatiotemporal 

relationships between photovoltaic power and 

geographical as well as meteorological factors. By 

selectively focusing on regions that have a critical 

impact on the prediction task, the model enhances 

prediction accuracy and stability while 

maintaining a more efficient computational 

complexity. Consequently, compared to other 

models, the SP-Transformer demonstrates stable 

predictive performance across all time steps. 

Figure 5 displays a comparison of the prediction 

results for the next 40 time steps from each model 

at the 48-hour and 336-hour nodes. Figure 6 

further illustrates the declining trend in prediction 

accuracy of these models from the 48-hour to the 

336-hour forecast horizon. 

From the figures, it can be observed that while 

some models exhibit performance close to that of 

the SP-Transformer at the 48-hour prediction 

mark, there is a noticeable decline in prediction 

accuracy for all models, except for the SP-

Transformer, during the 336-hour long-term 

forecasting task. The average prediction accuracy 

of the SP-Transformer at 336 hours decreases by 

approximately 10% compared to 48 hours, 

representing the smallest decline among all 

methods. In contrast, the second-best performing 

model, FEDformer, experiences a 24% drop in 
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accuracy, while the least effective model, LSTM, 

sees a 32% decline. This indicates that the SP-

Transformer is effective in capturing the 

spatiotemporal relationships in time series data 

when dealing with long sequences, thereby 

demonstrating a clear advantage in stability and 

accuracy. By employing spatiotemporal positional 

encoding, the model embeds geographical 

location information of relevant sites, enhancing 

its ability to capture the spatiotemporal 

dependencies of photovoltaic power data. 

 

 
 

Figure 4. Visualization of RMSE in comparative experiments. 
 

 
Figure 5. Comparison of prediction results for future 40 time steps at 48-hour and 336-hour nodes across models. 

 

Compared to other models, the SP-Transformer 

delves deeper into the relationships between 

meteorological and geographical factors and 

photovoltaic power, improving prediction 

accuracy. Additionally, the SP-Transformer 

utilizes a spatiotemporal probabilistic sparse self-

attention mechanism, which selectively focuses on 

key areas that significantly influence the 

prediction task. This approach reduces 

computational complexity when handling large-
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scale data while enhancing the model’s 

adaptability and predictive performance. The 

introduction of a feature pyramid-based self-

attention distillation module, along with multi-

scale depthwise separable convolution for feature 

extraction, effectively minimizes information loss 

and improves model stability, thus enhancing its 

ability to capture and generalize complex patterns 

in photovoltaic power data. In summary, the SP-

Transformer addresses issues of weak data 

correlation and low prediction efficiency in 

medium and long-term PV power forecasting 

through its spatiotemporal positional encoding, 

spatiotemporal probabilistic sparse self-attention 

mechanism, and feature pyramid self-attention 

distillation module, resulting in superior 

performance in these tasks. 
 

 
Figure 6. Prediction accuracy degradation in comparative 

experiments. 
 

Table 1 presents the results of the comparative 

experiments for each model. This paper utilized 

RMSE and MAE as evaluation metrics, with the 

best result for each metric highlighted in bold. 

Ten random data sets were selected from the 

testing set to conduct experiments on each model, 

and the RMSE and MAE metrics were averaged 

over ten trials. From the data in table 1, it is 

evident that the SP-Transformer outperforms the 

other methods. The RMSE for the SP-

Transformer at 48 hours is 0.761, which is 4.2% 

lower than that of FEDformer [24], 10.8% lower 

than Informer [23], 20.3% lower than 

LogTransformer [22], and 33.9% lower than 

Transformer [21]. The SP-Transformer 

demonstrates high prediction accuracy across all 

four prediction time steps, maintaining an RMSE 

of 1.061 at 336 hours. Although this represents an 

increase in error compared to the 48-hour 

prediction, the growth trend is steady and gradual, 

remaining significantly lower than that of the 

other methods. Overall, the SP-Transformer 

achieves the highest accuracy in predicting 

photovoltaic power and exhibits the most stable 

performance in long sequence predictions. 

Transformer [21]. The SPTransformer 

demonstrates high prediction accuracy across all 

four prediction time steps, maintaining an RMSE 

of 1.061 at 336 hours. Although this represents an 

increase in error compared to the 48-hour 

prediction, the growth trend is steady and gradual, 

remaining significantly lower than that of the 

other methods. Overall, the SP-Transformer 

achieves the highest accuracy in predicting 

photovoltaic power and exhibits the most stable 

performance in long sequence predictions. 

 
Table 1. Comparative experimental results. 

336 h 168 h 96 h 48 h 
method 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

0.768 1.061 0.655 0.905 0.562 0.784 0.558 0.761 Ours 

0.924 1.123 0.799 0.987 0.725 0.885 0.659 0.795 [24] 

0.844 1.096 0.811 1.053 0.706 0.913 0.663 0.854 [23] 

0.952 1.209 0.874 1.139 0.737 1.002 0.714 0.956 [22] 

0.995 1.232 0.952 1.190 0.959 1.162 0.932 1.151 [21] 

3.494 4.384 1.934 2.418 1.946 2.363 1.934 2.360 [12] 

 

3.4.2. Ablation experimental eesults  

To investigate the impact of each component of 

the SP-Transformer model on the accuracy of 

photovoltaic power prediction, ablation 

experiments were conducted. Specific 

components of the model were systematically 

removed, and their effects on overall performance 

were observed. The Transformer was selected as 

the baseline model for comparison. In Model 1, 

the spatiotemporal positional encoding was 

eliminated, and traditional sequential positional 

encoding was used instead. Model 2 replaced the 
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spatiotemporal probabilistic sparse self-attention 

mechanism with a global self-attention 

mechanism. In Model 3, the decoder structure 

based on feature pyramid self-attention distillation 

was substituted with the decoder structure from 

the Transformer.  

Figure 7 displays the prediction results of each 

model from the ablation experiments at the 48-

hour and 336-hour marks, while figure 8 

illustrates the decline in prediction accuracy for 

these models as the forecast horizon extends from 

48 hours to 336 hours. 

 

 
Figure 7. Prediction results of ablation experiments for each model at 48-hour and 336-hour nodes. 

 

 
Figure 8. Prediction accuracy degradation in ablation 

experiments. 
 

In the ablation experiments, Model 1 eliminated 

the spatiotemporal positional encoding in favor of 

traditional sequential positional encoding. The 

results indicated a decline in prediction accuracy 

compared to the complete SP-Transformer, 

highlighting the significant role of spatiotemporal 

positional encoding in capturing the 

spatiotemporal relationships in photovoltaic 

power data. The embedding of geographical 

location information enables the model to better 

understand the variations in photovoltaic power 

across different sites, thereby improving the 

accuracy of medium and long-term predictions. 

Model 2 replaced the spatiotemporal probabilistic 

sparse self-attention mechanism with a global 

self-attention mechanism, resulting in decreased 

prediction accuracy. This suggests that the 

spatiotemporal probabilistic sparse self-attention 

mechanism is effective in addressing data 

redundancy issues. By selectively focusing on 

regions that have a critical impact on the 

prediction task, this mechanism effectively 

reduces spatiotemporal complexity and enhances 

the model’s adaptability and predictive 

performance. Model 3 substituted the feature 

pyramid-based self-attention distillation decoder 

with the decoder structure from the Transformer. 

The experimental results showed a negative 

impact on model performance, indicating that the 

feature pyramid-based self-attention distillation 

decoder, which employs multi-scale depthwise 

separable convolution for feature extraction, helps 

reduce information loss and improve model 

stability. The self-attention distillation method 

enhances the model’s ability to capture and 

generalize complex patterns in photovoltaic power 

data, allowing it to maintain high accuracy and 

robustness in long-term prediction tasks. 

The experimental results indicate that the 

complete SP-Transformer achieves an accuracy of 

93.8% in 48-hour predictions and 90.4% in 336-

hour predictions. In contrast, the prediction 

accuracy of Models 1 to 3, each with a module 
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removed, declines but remains higher than that of 

the traditional Transformer model. This 

demonstrates that each module in the SP-

Transformer plays a crucial role in enhancing the 

accuracy and efficiency of medium and long-term 

PV power predictions. The collaborative 

contribution of these modules improves the 

model’s performance in long-term forecasting 

tasks, resulting in superior stability and accuracy 

across different time scales compared to other 

models. 

The RMSE values of the photovoltaic power 

prediction results from each model on the testing 

set are visually represented in figure 9. 

Table 2 presents the results of the ablation 

experiments for each model. The data indicates 

that all models outperform the traditional 

Transformer, with the complete SP-Transformer 

exhibiting the best performance across all time 

steps. Model 1 shows a reduction in RMSE and 

MAE of 25.8% and 28.8% respectively, at the 48-

hour prediction step compared to the Transformer, 

and reductions of 1.8% and 4.3% at the 336-hour 

step. The spatiotemporal positional encoding 

provides the model with the ability to perceive the 

spatiotemporal relationships between photovoltaic 

sites, enhancing its capability to capture complex 

spatiotemporal features. Model 2 achieves a 

reduction in RMSE and MAE of 16.9% and 

23.3% respectively, at the 48-hour prediction step, 

and reductions of 11.3% and 16.1% at the 336-

hour step. The spatiotemporal probabilistic sparse 

self-attention mechanism identifies active points 

that significantly impact the current prediction. 

This approach to computational efficiency, 

making it more suitable for large-scale datasets 

and real-time prediction tasks. Model 3 

demonstrates a reduction in RMSE and MAE of 

30.4% and 29.2% respectively, at the 48-hour 

prediction step, and reductions of 13.8% and 

14.5% at the 336-hour step. The feature pyramid-

based self-attention distillation, through multi-

scale feature extraction, reduces information loss 

and enhances model stability. This improvement 

strengthens the model’s ability to capture and 

generalize complex patterns in photovoltaic power 

data, helping it maintain accuracy and coherence 

in long-term predictions, thus addressing the issue 

of low efficiency in medium and long-term PV 

power forecasting. 

 

 
Figure 9. Visualization of RMSE in ablation experiments. 

 



T. Ling, et al. / Renewable Energy Research and Applications, Vol. 6, No. 2, 2025, 165-178 
 

177 

 

 
Table 2. Ablation experimental results. 

336 h 168 h 96 h 48 h 
method 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

0.768 1.061 0.655 0.905 0.562 0.784 0.558 0.761 Ours 

0.952 1.209 0.811 1.053 0.706 0.913 0.663 0.854 M1 

0.835 1.096 0.874 1.139 0.737 1.002 0.714 0.956 M2 

0.835 1.061 0.800 0.987 0.706 0.885 0.659 0.800 M3 

0.995 1.232 0.952 1.190 0.959 1.162 1.932 1.151 Transformer 

 

4. Conclusion 

This paper presents the SP-Transformer model, 

aimed at addressing the issues of insufficient 

consideration of spatiotemporal relationships 

between sites and the low predictive efficiency in 

medium and long-term PV power forecasting. The 

main contributions are as follows: First, the 

introduction of spatiotemporal positional encoding 

enriches the photovoltaic site data with temporal 

and spatial information, enabling the model to 

better capture the relative positional relationships 

between sites. This encoding provides insights 

into the spatiotemporal associations among 

different sites, enhancing the model’s ability to 

capture more complex spatiotemporal features. It 

increases sensitivity to geographic differences 

between sites and offers deeper contextual 

understanding. Second, this paper proposes the 

SpatiotemporalProbSparse self-attention 

mechanism, which selects active points in the 

spatiotemporal dimension to reduce model 

complexity and better capture the spatiotemporal 

correlations in the input data. This mechanism 

selectively focuses on areas that significantly 

impact the prediction task, improving the model’s 

prediction accuracy while maintaining efficient 

computational complexity. This design enhances 

the model’s adaptability when processing large-

scale photovoltaic power data, providing greater 

feasibility for practical applications. This paper 

introduced a feature pyramid-based self-attention 

distillation approach, which reduces information 

loss through multi-scale feature extraction and 

improves model stability. This allows the model 

to consider spatiotemporal features across 

different scales more comprehensively, better 

adapting to various prediction scenarios. The 

inclusion of self-attention distillation helps ensure 

accuracy and consistency in long-term prediction 

tasks. Finally, this paper demonstrates through 

experiments that the SP-Transformer exhibits 

superior performance in medium and long-term 

PV power forecasting tasks. 
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