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Abstract

Medium and long-term photovoltaic (PV) power forecasting is crucial for the planning and management of
new energy grids. Existing methods often suffer from limited processing capabilities and low prediction
efficiency. To address these challenges, this paper proposes a Transformer-based approach called SP-
Transformer (Spatiotemporal-ProbSparse Transformer), designed to capture spatiotemporal correlations
between meteorological, geographical, and PV power data. The model incorporates geographical location
information through spatiotemporal position encoding and employs a spatiotemporal probability sparse self-
attention mechanism to enhance correlation capture while reducing complexity. Additionally, a feature
pyramid-based self-attention distillation module is introduced to improve the model’s ability to generalize
complex patterns in medium and long-term forecasting. Experimental results demonstrate that SP-
Transformer achieves 93.8% accuracy for forecasting PV power over the next 48 hours and 90.4% for 336
hours, outperforming all comparative algorithms.

Keywords: PV power forecasting, Medium and Long term forecasting, Transformer, Attention mechanism,

Feature pyramid self-attention distillation.

1. Introduction

Medium and long-term photovoltaic (PV) power
forecasting refers to the prediction of electricity
generation by photovoltaic power systems over a
period ranging from several days to months or
even longer. It plays a significant role in energy
planning, power system operations, and energy
investment [1]. Compared to short-term PV power
forecasting, medium and long-term PV power
exhibits cyclical variation. Typically, the
photovoltaic power curve changes in a similar
trend every day, showing a daily cyclicality.
Moreover, with the change of seasons, the
variation in solar elevation angle and daylight
duration also affects the output of photovoltaic
power, presenting a seasonal cyclical change.
Medium and long-term forecasting requires
consideration of a longer time range and a larger
spatial scale, which necessitates the model to have
more complex spatiotemporal feature capturing
capabilities [2]. At the same time, considering the
differences in geographical locations, the
forecasting model needs to adapt to
meteorological differences in different regions.
Current photovoltaic power forecasting methods
mainly include statistical methods [3], machine

learning methods [4], and deep learning methods
[5]. Traditional statistical methods provide
intuitive explanations of the relationships between
power and various influencing factors, which
helps to deeply understand the main factors
affecting power fluctuations [6]. These methods
perform well on smaller-scale and shorter time-
span datasets, suitable for many scenarios in
practical applications [7]. However, statistical
methods are usually based on linear assumptions,
making it difficult to capture complex nonlinear
relationships. They also have higher requirements
for data quality and sampling frequency, and their
response to potential emergencies or uncertain
factors that may arise in the future is relatively
poor [8]. Therefore, statistical methods have
certain limitations when dealing with medium and
long-term PV power forecasting tasks.

Machine learning methods, trained on a vast
amount of historical data, can automatically adapt
to the nonlinear and complex relationships in
photovoltaic power forecasting tasks, exhibiting
good generalization capabilities [9]. These
methods are widely applied in photovoltaic power
forecasting tasks. Typically, machine learning
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methods require a large volume of data for
training and tuning, especially in medium and
long-term forecasting where more time series data
and related variables need to be considered,
involving substantial computational resources
[10]. Moreover, machine learning methods carry
the risk of overfitting when dealing with large-
scale data [11], which is particularly prominent in
medium and long-term PV power forecasting.
Deep learning models such as RNN (Recurrent
Neural Network) and LSTM [12] (Long Short-
Term Memory) possess memory capabilities,
enabling them to consider contextual information
in time series data, such as seasonal variations and
cyclical trends, thereby better predicting the
changes in photovoltaic power generation in the
medium to long term [13]. Deep learning
methods, through their multi-layered neural
network structures, can capture complex nonlinear
relationships  in  photovoltaic  power and
effectively learn spatiotemporal features, better
handling the impact of multidimensional factors
such as illumination, meteorology on photovoltaic
power, enhancing the model’s adaptability to the
dynamic changes of photovoltaic power systems,
and thereby improving forecast accuracy [14].
However, researchers have found in recent years
that deep learning methods like RNN and LSTM
do not perform ideally when dealing with long-
term dependencies in time series data [15]. As a
neural network based on recurrent structures,
LSTM’s computation process is sequential, with
each time step depending on the results of the
previous time step. This makes effective parallel
computation difficult during training, thus limiting
the model’s training speed. Moreover, when
dealing with extremely long sequences, LSTM
may face the issue of error accumulation.
Additionally, the variation in photovoltaic power
is not only influenced by time series factors but
also by various meteorological factors such as
light exposure, temperature, wind speed, etc.
Although LSTM can capture  complex
relationships in time series, it may not effectively
extract and integrate this multi-dimensional
feature information.

Existing photovoltaic power forecasting methods
are mostly designed for short-term predictions
[16], and their performance often falls short in
medium and long-term forecasting [17]. The
Transformer captures long-term dependencies in
sequences through its self-attention mechanism,
allowing the model to focus on all other positions
when processing each position, unlike RNN and
LSTM which need to process in a sequential order
by time steps. This makes the Transformer more
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efficient in training and inference for long
sequence data. In recent years, Transformer
models have been widely applied to medium and
long-term PV power forecasting tasks. For
instance, Ran et al [18] proposed a hybrid model
that combines adaptive noise, complete ensemble
empirical mode decomposition, sample entropy,
and Transformer. This model addresses the long
memory loss issue by introducing an attention
mechanism and combines empirical mode
decomposition techniques with the Transformer to
verify the final impact of different mode
decomposition techniques on forecasting results.

The aforementioned methods only use time series
data for photovoltaic power forecasting, without
considering the impact of meteorological and
geographical factors on photovoltaic power. The
lack of support for geographical location and
meteorological information can lead to poor
performance in perceiving the spatiotemporal
characteristics of the data. Zhang et al [19]
proposed a new Transformer model for power
grid load forecasting, which  combines
Transformer and graph convolutional networks,
using a feedforward neural network to output the
predicted load values. The aforementioned
methods use global self-attention mechanisms for
medium and long-term PV power forecasting. The
global self-attention mechanism treats all input
sequence information as equally important, which
can cause the model to overlook local features and
changes, wasting a large amount of computational
resources on processing spatiotemporal data with
little impact on forecasting, increasing the
model’s complexity and computational costs. Cao
et al [20] proposed an LSTM-Informer model
based on an improved Stacking ensemble
algorithm. This model utilizes long short-term
memory and Informer as the base models and
improves the traditional k-fold cross-validation in
the Stacking algorithm to time series cross-
validation, integrating time series forecasting
models. The aforementioned methods use a
stacked multi-layer structure of identical encoder-
decoder structures to process feature information,
which can lead to an excessive humber of model
parameters. When dealing with large-scale
spatiotemporal data, this structure is prone to
overfitting, reducing the model’s ability to capture
potential patterns in complex data, and limiting
the model’s performance and generalization
ability in medium and long-term forecasting tasks.
Compared to traditional statistical methods and
machine learning methods, Transformer models
have certain advantages in medium and long-term
time series forecasting tasks, but they still face
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certain challenges when predicting photovoltaic
power. The position encoding of Transformer
models can only capture temporal information and
cannot fully consider the impact of extensive
meteorological and geographical factors on
photovoltaic power. The self-attention mechanism
of  Transformer models has  excessive
computational complexity when processing
medium and long-term PV power data.
Photovoltaic power data not only has time series
characteristics but is also affected by geographical
location and meteorological conditions. Therefore,
a model is needed that can capture this
spatiotemporal correlation. In response to the
above issues, this paper proposes a Transformer-
based medium and long-term PV power
forecasting model called SP-Transformer
(Spatiotemporal-ProbSparse Transformer).

The main contributions of this paper are as
follows:

e To address the issue of weak spatiotemporal
correlation in medium and long-term PV
power data, this paper introduces a
spatiotemporal position encoding method. By
embedding encoded vectors containing site
spatial information into the input time-series
meteorological data, the model can more
accurately  capture the spatiotemporal
dependencies between sites. This method
uses timestamps to represent different
temporal positions and incorporates latitude
and longitude as spatial position encodings,
revealing the relative spatial relationships
between sites. This approach significantly
enhances the model’s ability to perceive
spatiotemporal associations in photovoltaic
power data, demonstrating better adaptability

in scenarios with significant spatial
distribution and climatic condition
differences.

e To resolve the challenges of inefficiency and
insufficient correlation capture stemming
from data redundancy in medium and long-
term forecasting, this paper proposes a
Spatiotemporal-ProbSparse  Self-Attention
mechanism. This mechanism not only
reduces the computational load but also
enhances the utilization of spatiotemporal
correlations. By introducing the Haversine
distance measure and a probability sparse
strategy, the mechanism identifies "active
points" in the spatiotemporal dimension,
reducing computational expenditure on
"nonactive points"”, thereby improving the
accuracy and efficiency of photovoltaic
power forecasting. This mechanism provides
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a more efficient solution for medium and
long-term forecasting tasks.

¢ In response to the inefficiencies encountered
in medium and long-term photovoltaic power
forecasting, this paper introduces a Feature
Pyramid Self-Attention Distillation Module
(FPSA) that precisely captures potential
patterns within photovoltaic power data. This
approach constructs a multi-level feature
pyramid structure through deep separable
convolutions across various scales, providing
an extensive receptive field to aid the model
in understanding complex patterns, ensuring
efficient feature extraction and complete
information transfer. The FPSA achieves
efficient feature extraction in complex
environments and can be widely applied to
medium and long-term forecasting tasks,

enabling efficient mining of temporal
information.
2. Method
To effectively capture the spatiotemporal
correlations  between  meteorological and

geographical elements and photovoltaic power
data in medium and long-term forecasting, this
paper proposes a Transformer-based medium and
long-term PV power forecasting model, the
SpatiotemporalProbSparse  Transformer  (SP-
Transformer), aimed at enhancing the accuracy
and efficiency of medium and long-term PV
power forecasting. The overall architecture of the
model is shown in figure 1.

The SP-Transformer model enhances its ability to
capture the complex spatiotemporal correlations
in photovoltaic power data through the
mechanism of spatiotemporal position encoding.
This encoding provides the model with crucial
information about the geographical locations of
sites, thereby improving its capability to capture
more intricate spatiotemporal features. With
spatiotemporal position encoding, the model can
gain deeper insights into the interdependencies
between different sites, offering richer contextual
information for forecasting tasks. To further
reduce the model’s time and space complexity
while maintaining predictive accuracy and
stability, the SP-Transformer model also
incorporates a spatiotemporal probability sparse
self-attention  mechanism. This mechanism
selectively focuses on areas that have a key
impact on the forecasting task, capturing the
spatiotemporal correlations in the input data more
effectively while reducing model complexity. This
mechanism allows the model to improve
predictive accuracy at a more efficient
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computational complexity and enhances its
adaptability to large-scale photovoltaic power
data. The SP-Transformer model utilizes a feature
pyramid self-attention distillation mechanism,
which reduces information loss and enhances
model stability through multi-scale feature
extraction and fusion. This enables the model to
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consider spatiotemporal features at various scales
more comprehensively, thus better adapting to
different forecasting scenarios. The introduction
of self-attention distillation helps ensure that the
model maintains accuracy and consistency with
input data in long-term forecasting tasks.

: l Encoder
+ I—n3 S %3 Z 3 |BE—8 M — £
R T T | | &= 2 = == | 8 = 2 —
Spatiotemporal ] 5 = = < 22 i."_.:.' = 2 = ¢
| Position Encoding | | 3 £ e | |3 wl W=
‘ + = FPSA Dastillation = o | =
[ Spatial = - I l
I Position Encoding "3 N |
Inputs: X, ST Position Encoding
| 1
T[T o]ofe]oo]
Inputs: X .= tems X o)
Figure 1. Overall Architecture of SP-Transformer.
2.1. Spatiotemporal position encoding anpm M= au! + PE(L iy T
In the Transformer model, position encoding is ' ' 1)

used to handle positional information within input
sequences, as the Transformer lacks explicit
sequencing like Recurrent Neural Networks
(RNNs) or Long Short-Term Memory networks
(LSTMs). Without position encoding, the
Transformer would not be able to distinguish
between words or tokens at different positions in
the input sequence, as it is an attention-based
model that focuses on the content of the input
rather than its position. Position encoding allows
the Transformer to take into account the relative
position of each element in the sequence, but this
is limited to one-dimensional sequences. In the
medium and long-term photovoltaic power
forecasting task, the position encoding in the
Transformer can only consider the sequential
information along the temporal dimension and
cannot account for the relative positions of
different nodes in the spatial dimension.

To enable the model to further extract the relative
spatial  position information of different
photovoltaic sites, this paper adds spatial position
encoding to the input sequence on this basis. The
input vector of the model is obtained by summing
the scalar projection, local time stamp, global time
stamp, and spatial position encoding, as shown in
equation (1):

; [SE(LxX(t—l)H) } b + SSE(LXx(t—1)+i)

t
where Ui represents the scalar projection, and &

is a factor that balances the size of the scalar
projection with other encodings. If the input

sequence has already been normalized, then @ =1,
The scalars in this paper include historical
photovoltaic power, temperature, humidity,
horizontal wind speed, vertical wind speed, wind
direction, cloud water content, cloud ice content,
and solar irradiance. PE stands for the local time
stamp, SE for the global time stamp, and SSE for
the spatial position encoding. ! represents the

moment, L is the length of the input scalar

sequence, ! is the current position, and P is the
global time stamp. The structure of the
spatiotemporal position encoding is shown in
figure 2.

Local time stamp refers to the position encoding
of Transformer, as shown in equation (2, 3):

PE =sin(pos /(2L )" ) )

(pos,2j)

PE

(pos,2 j+1)

= cos( pos/ (2L, )" ) (3)

168



T. Ling, et al. / Renewable Energy Research and Applications, Vol. 6, No. 2, 2025, 165-178

where pos represents the position of the data point
at the current moment, 2] denotes even points,

2]+1 denotes odd points, and Ginoge refers to the
dimensionality of the input sequence features.

The global time stamp selects hierarchical
timestamps, which helps to enhance the model’s
ability to capture long-range dependencies.
Considering that photovoltaic power is minimal
during the night and early morning, this paper
selects data from 8:00 to 18:00 each day as inpult.
Additionally, since photovoltaic power generation
is primarily influenced by seasonal changes and
the alternation of day and night, the impact of
annual, monthly, and daily time features on
photovoltaic power is not significant. Therefore,
this paper chooses season and hour as the global
time stamps.
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This paper selects latitude and longitude
coordinates as spatial position encoding. The
geographical location of photovoltaic stations
affects variables such as daily sunlight duration
and the angle of solar incidence. By introducing
latitude and longitude coordinates, the model can
better capture the differences in geographical
locations, thereby more accurately reflecting
changes in solar radiation and other factors.
Spatial position encoding helps the model capture
spatial correlations. Adjacent stations may have
similar lighting and weather patterns, and this
correlation can be better modeled through spatial
position encoding. The model can take into
account the spatial relationships between stations,
thereby more accurately predicting future power
outputs.
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Figure 2. The structure of Spatiotemporal Position Encoding.

2.2. Spatiotemporal probability sparse self-
attention mechanism

The self-attention mechanism of the Transformer
model leads to high computational complexity
when dealing with long sequences, as it requires
calculating attention weights with all other
positions for each position. The computational
complexity  increases  exponentially  when
processing long sequence data, reducing the
efficiency of handling long sequences. However,
not all data points are closely related. To enable
the model to better extract key information, this
paper proposes a Spatiotemporal-ProbSparse self-
attention mechanism, which selects some active
data points in the input sequence along the
spatiotemporal dimension to calculate attention,
thereby reducing the overall computational cost.
This allows the model to focus more on the key
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parts of the sequence without being distracted by
unnecessary information.

Adjacent photovoltaic power stations are typically
influenced by similar meteorological conditions
and environmental factors, such as similar terrain
and solar incidence angles. By leveraging the
power data from nearby stations, the model can
learn these shared pieces of information, thereby
better capturing spatial correlations. This paper
proposes the Spatiotemporal-ProbSparse self-
attention mechanism to select nearby active points
of photovoltaic power stations in the spatial
dimension. The specific equation is as follows:

L

2% (@



T. Ling, et al. / Renewable Energy Research and Applications, Vol. 6, No. 2, 2025, 165-178

where d represents the distance between two
photovoltaic sites, ' is the average radius of the

Earth, 1°™, 18% are the longitude and latitude of

. lon. lat. .
the target site,and 7, ! are the longitude and

latitude of the selected site. L denotes the total
number of photovoltaic power stations. D s
defined as the difference between the mean
distance of the target site to all other sites and the
distance from the target site to the selected site. If
D is greater than 0, the selected site is considered
an active point that may influence the
photovoltaic power forecasting of the target site.
Global attention is calculated for the photovoltaic
power data of the selected active points and the
target site at each moment, resulting in

photovoltaic power data that takes into account
spatial location information.

The traditional Transformer model utilizes self-
attention mechanisms with a time complexity of

o) . : .

, Which leads to high memory consumption
and low computational efficiency when
processing long sequence data. The ProbSparse
selfattention mechanism addresses this issue by
calculating the difference between the target
point’s attention distribution and a uniform
distribution, thereby identifying points that
significantly  contribute to the attention
computation while ignoring others. This approach
reduces the time complexity of the Transformer
model from O(L?) to O(L*In(L)),

. ) Iati-latj )
dg ;) =2r-arcsin| [sin®| ——— +cos( lat .)~cos( lat .)sm _—
' 2 I J 2

substantially enhancing the model’s performance
in predicting long sequence data. The ProbSparse
self-attention mechanism utilizes the Kullback-
Leibler (KL) divergence to measure the
discrepancy between the attention probability
distribution and the uniform distribution. The
specific equation is as follows:

_ a;k; 1 & ak;
M(qi,K):maxj{Td‘}—L—Zl:Td‘
K =

Where 4 represents the query, K represents the

(6)

Key, L represents the total number of keys, and
M(q.K) represents the sparsity measure for the
i-th query. If the M (g, K) for the i-th query is
large, it is considered to contribute more to the
attention. Selecting several points with the largest

M(q.K) can approximate the attention
probability distribution. The final equation for the
Spatiotemporal-ProbSparse attention calculation
is:

A(Q,K,V) =Softmax [(_DL} \V @)

Ja

where Q is a sparse matrix that contains only u
queries selected by the Spatiotemporal-
ProbSparse attention mechanism, with other

—n*
points filled with zeros, where u=c*inlg and €
is a constant sampling factor. The
SpatiotemporalProbSparse self-attention
mechanism selects active points on both spatial
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lon;-lon;

(5)

)

and temporal dimensions, thereby limiting the

*

model’s complexity to O(LK InLQ). This
approach not only captures the spatiotemporal
correlations within the input data more effectively
but also focuses on regions that are critical for the
prediction task, thereby enhancing the prediction
accuracy with a more efficient computational
complexity. This design makes the model more
adaptable to large-scale photovoltaic power data,
enhancing its feasibility in practical application
scenarios.

2.3. FPSA

After the input sequence passes through the
SpatiotemporalProbSparse  attention layer to
obtain sparse features, redundant values are
inevitably present in the feature map. To highlight
key features and further reduce the computational
load of the model, feature distillation is an
effective method. Some existing models use max-
pooling to reduce the dimensionality of the
attention block, and in the stacked Encoder, the
input sequence is halved with each additional
layer, finally connecting the outputs of all layers
to obtain the feature map. However, max-pooling
retains only the maximum value and ignores other
information; other sub-maximal feature values
may also contain important information, and
directly downsampling the input sequence can
lead to the loss of a significant amount of long-
term dependency information. Therefore, this
paper proposes a Feature Pyramid Self-Attention
Distillation Module (FPSA) to better extract
dominant key features, as shown in figure 3.
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In this figure, represents the input scalar, denotes
the length of the time series, n refers to the
number of multi-head attention heads, and
indicates the number of encoder layers. For the
original input sequence, downsampling is applied
starting from the stacked second layer of the
Encoder using Depthwise Separable Convolution,
with each layer employing convolution kernels of
different sizes that increase with the layer number.
By utilizing multi-scale convolution along the
temporal dimension, the network is enabled to
focus on temporal information of varying lengths.
In the channel dimension, a 1x1 convolution is
employed to extract cross-features among
different elements, thereby enriching the
network’s receptive field and allowing for a more
comprehensive understanding of the structure and
content of the input sequence. The multi-level
convolutional network can learn more abstract and
high-level features, which aids the network in
establishing an understanding of complex patterns
and objects. Furthermore, downsampling through
convolution is applied to the attention blocks in
each Encoder layer. Compared to max-pooling,
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v

convolution can more effectively capture local
features of the input data. By stacking multiple
convolutional and pooling layers, the model can
adapt to feature data of varying scales and learn
deeper hierarchical representations of the data.
The feature pyramid self-attention distillation
process is shown in the equation (8).
X, = ELUDSConv([X|1.5)) (8)
where represents the number of Encoder layers, |
denotes the number of distillation layers within
each Encoder, indicates the self-attention block
operation, DSConv refers to depthwise separable
convolution, and ELU is the activation function.
Through the distillation process, the model can
extract key features from the stacked multiple
Encoders while reducing redundant information.
Finally, the outputs of the stacked Encoders are
concatenated along the channel dimension to form
the output of the Encoder. The feature map
produced by the Encoder is then processed
through two stacked Decoder layers to obtain the
final photovoltaic power prediction value.
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Figure 3. The structure of FPSA.

3. Experiment

3.1. Dataset

The dataset used in this study includes
photovoltaic The dataset used in this study
includes  photovoltaic  power data  and
meteorological data, covering the period from
March 2022 to February 2023. In the dataset, 70%
of the data is allocated to the training set, 20% to
the testing set, and the remaining 10% to the
validation set. To eliminate instances of nearly
zero photovoltaic power during nighttime, this
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study selected data only from 8 AM to 6 PM each
day. The photovoltaic power data is sourced from
the open dataset provided by the Belgian
electricity supplier Elia. This paper utilized
meteorological data from the WRF model
provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF), which
includes information on temperature, humidity,
wind speed, wind direction, cloud water content,
cloud ice content, and solar irradiance. The
meteorological data has a temporal resolution of 1
hour and a spatial resolution of 1 kilometer.
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3.2. Experimental setup and scheme

The experimental setup used in this study features
an Intel(R) Core(TM) i9-10900X processor, 32GB
of RAM, and an NVIDIA GeForce GTX 2080 Ti
GPU, with Ubuntu 18.04 as the operating system.
The environment is configured to run PyTorch
version 3.6. The training process employs the
Adam optimizer, with all models trained for 100
epochs. The batch size is set to 64, and the initial
learning rate is set to 0.001.

3.2.1. Comparative experimental setup

To evaluate the performance of the model in the
photovoltaic power prediction task, this paper
compared it with several common time series
forecasting methods, including LSTM,
Transformer [21], Log Transformer [22], Informer
[23], and Fedformer [24]. To ensure fairness in
the experiments, the dataset was split into training
and testing sets. After the model training was
completed, each model was applied to the testing
set, and their performance in the photovoltaic
power prediction task was assessed. This study
utilized Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) to compare the
prediction effectiveness of the various models.

3.2.2. Ablation experimental setup

To validate the effectiveness of each module in
the model, this study conducted ablation
experiments, systematically removing specific
components and observing their impact on overall
performance. The complete SP-Transformer,
which includes all modules, served as the baseline
model. In Model 1, the spatiotemporal positional
encoding was replaced with sequential positional
encoding. In Model 2, the spatiotemporal
probabilistic sparse self-attention mechanism was
substituted with a global self-attention
mechanism. In Model 3, the feature pyramid-
based self-attention distillation decoder was
replaced with the decoder structure from the
Transformer. RMSE and MAE were utilized to
evaluate the prediction performance of each
model.

3.3. Evaluation metrics
This study employs RMSE and MAE as two
metrics to evaluate the performance of the

photovoltaic power prediction model. The
equations for RMSE and MAE are as follows:

18 2
RMSE = =3 (¥, ~ %) ©)

t=1
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1 N
MAE:WZ

t=1

Ye =W (10)
where ¥; represents the predicted photovoltaic

power at time t, y; denotes the actual photovoltaic
power at time t, and N is the number of samples.

3.4. Experimental results

3.4.1. Comparative experimental results

To validate the advantages of the proposed SP-
Transformer in the photovoltaic power prediction
task, this study compared the prediction results of
SP-Transformer with several common time series
forecasting methods, including LSTM,
Transformer, LogTransformer, Informer, and
FEDformer. The prediction time steps were
gradually extended to assess the performance of
each model in long sequence prediction tasks.

The RMSE values of the photovoltaic power
prediction results from the aforementioned
methods on the testing set are visually represented
in figure 4. From the figure, it can be observed
that as the prediction time steps are extended,
most models begin to exhibit significant
deviations in their predictions. However, the SP-
Transformer,  utilizing the  spatiotemporal
probabilistic sparse self-attention mechanism, is
better able to capture the spatiotemporal
relationships between photovoltaic power and
geographical as well as meteorological factors. By
selectively focusing on regions that have a critical
impact on the prediction task, the model enhances
prediction accuracy and stability  while
maintaining a more efficient computational
complexity. Consequently, compared to other
models, the SP-Transformer demonstrates stable
predictive performance across all time steps.
Figure 5 displays a comparison of the prediction
results for the next 40 time steps from each model
at the 48-hour and 336-hour nodes. Figure 6
further illustrates the declining trend in prediction
accuracy of these models from the 48-hour to the
336-hour forecast horizon.

From the figures, it can be observed that while
some models exhibit performance close to that of
the SP-Transformer at the 48-hour prediction
mark, there is a noticeable decline in prediction
accuracy for all models, except for the SP-
Transformer, during the 336-hour long-term
forecasting task. The average prediction accuracy
of the SP-Transformer at 336 hours decreases by
approximately 10% compared to 48 hours,
representing the smallest decline among all
methods. In contrast, the second-best performing
model, FEDformer, experiences a 24% drop in
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accuracy, while the least effective model, LSTM,
sees a 32% decline. This indicates that the SP-
Transformer is effective in capturing the
spatiotemporal relationships in time series data
when dealing with long sequences, thereby
demonstrating a clear advantage in stability and
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accuracy. By employing spatiotemporal positional
encoding, the model embeds geographical
location information of relevant sites, enhancing
its ability to capture the spatiotemporal
dependencies of photovoltaic power data.
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Figure 5. Comparison of prediction results for future 40 time steps at 48-hour and 336-hour nodes across models.

Compared to other models, the SP-Transformer
delves deeper into the relationships between
meteorological and geographical factors and
photovoltaic  power, improving prediction
accuracy. Additionally, the SP-Transformer

utilizes a spatiotemporal probabilistic sparse self-
attention mechanism, which selectively focuses on
key areas that significantly influence the
prediction task. This approach  reduces
computational complexity when handling large-
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scale data while enhancing the model’s
adaptability and predictive performance. The
introduction of a feature pyramid-based self-
attention distillation module, along with multi-
scale depthwise separable convolution for feature
extraction, effectively minimizes information loss
and improves model stability, thus enhancing its
ability to capture and generalize complex patterns
in photovoltaic power data. In summary, the SP-
Transformer addresses issues of weak data
correlation and low prediction efficiency in
medium and long-term PV power forecasting
through its spatiotemporal positional encoding,
spatiotemporal probabilistic sparse self-attention
mechanism, and feature pyramid self-attention
distillation ~ module, resulting in  superior
performance in these tasks.
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Figure 6. Prediction accuracy degradation in comparative
experiments.

Table 1 presents the results of the comparative
experiments for each model. This paper utilized

RMSE and MAE as evaluation metrics, with the
best result for each metric highlighted in bold.
Ten random data sets were selected from the
testing set to conduct experiments on each model,
and the RMSE and MAE metrics were averaged
over ten trials. From the data in table 1, it is
evident that the SP-Transformer outperforms the
other methods. The RMSE for the SP-
Transformer at 48 hours is 0.761, which is 4.2%
lower than that of FEDformer [24], 10.8% lower
than Informer [23], 20.3% lower than
LogTransformer [22], and 33.9% lower than
Transformer [21]. The  SP-Transformer
demonstrates high prediction accuracy across all
four prediction time steps, maintaining an RMSE
of 1.061 at 336 hours. Although this represents an
increase in error compared to the 48-hour
prediction, the growth trend is steady and gradual,
remaining significantly lower than that of the
other methods. Overall, the SP-Transformer
achieves the highest accuracy in predicting
photovoltaic power and exhibits the most stable
performance in long sequence predictions.
Transformer [21]. The SPTransformer
demonstrates high prediction accuracy across all
four prediction time steps, maintaining an RMSE
of 1.061 at 336 hours. Although this represents an
increase in error compared to the 48-hour
prediction, the growth trend is steady and gradual,
remaining significantly lower than that of the
other methods. Overall, the SP-Transformer
achieves the highest accuracy in predicting
photovoltaic power and exhibits the most stable
performance in long sequence predictions.

Table 1. Comparative experimental results.

48 h 96 h 168 h 336 h
method

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Ours 0.761 0.558 0.784 0.562 0.905 0.655 1.061 0.768
[24] 0.795 0.659 0.885 0.725 0.987 0.799 1.123 0.924
[23] 0.854 0.663 0.913 0.706 1.053 0.811 1.096 0.844
[22] 0.956 0.714 1.002 0.737 1.139 0.874 1.209 0.952
[21] 1.151 0.932 1.162 0.959 1.190 0.952 1.232 0.995
[12] 2.360 1.934 2.363 1.946 2.418 1.934 4.384 3.494

3.4.2. Ablation experimental eesults

To investigate the impact of each component of
the SP-Transformer model on the accuracy of
photovoltaic ~ power  prediction,  ablation
experiments were conducted. Specific
components of the model were systematically
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removed, and their effects on overall performance
were observed. The Transformer was selected as
the baseline model for comparison. In Model 1,
the spatiotemporal positional encoding was
eliminated, and traditional sequential positional
encoding was used instead. Model 2 replaced the



T. Ling, et al. / Renewable Energy Research and Applications, Vol. 6, No. 2, 2025, 165-178

spatiotemporal probabilistic sparse self-attention
mechanism  with a global self-attention
mechanism. In Model 3, the decoder structure
based on feature pyramid self-attention distillation
was substituted with the decoder structure from
the Transformer.
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Figure 7 displays the prediction results of each
model from the ablation experiments at the 48-
hour and 336-hour marks, while figure 8
illustrates the decline in prediction accuracy for
these models as the forecast horizon extends from
48 hours to 336 hours.
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Figure 7. Prediction results of ablation experiments for each model at 48-hour and 336-hour nodes.
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Figure 8. Prediction accuracy degradation in ablation
experiments.

In the ablation experiments, Model 1 eliminated
the spatiotemporal positional encoding in favor of
traditional sequential positional encoding. The
results indicated a decline in prediction accuracy
compared to the complete SP-Transformer,
highlighting the significant role of spatiotemporal
positional ~ encoding in  capturing the
spatiotemporal  relationships in  photovoltaic
power data. The embedding of geographical
location information enables the model to better
understand the variations in photovoltaic power
across different sites, thereby improving the
accuracy of medium and long-term predictions.

Model 2 replaced the spatiotemporal probabilistic
sparse self-attention mechanism with a global
self-attention mechanism, resulting in decreased
prediction accuracy. This suggests that the
spatiotemporal probabilistic sparse self-attention
mechanism is effective in addressing data
redundancy issues. By selectively focusing on
regions that have a critical impact on the
prediction task, this mechanism effectively
reduces spatiotemporal complexity and enhances
the model’s adaptability and predictive
performance. Model 3 substituted the feature
pyramid-based self-attention distillation decoder
with the decoder structure from the Transformer.
The experimental results showed a negative
impact on model performance, indicating that the
feature pyramid-based self-attention distillation
decoder, which employs multi-scale depthwise
separable convolution for feature extraction, helps
reduce information loss and improve model
stability. The self-attention distillation method
enhances the model’s ability to capture and
generalize complex patterns in photovoltaic power
data, allowing it to maintain high accuracy and
robustness in long-term prediction tasks.

The experimental results indicate that the
complete SP-Transformer achieves an accuracy of
93.8% in 48-hour predictions and 90.4% in 336-
hour predictions. In contrast, the prediction
accuracy of Models 1 to 3, each with a module
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removed, declines but remains higher than that of
the traditional Transformer model. This
demonstrates that each module in the SP-
Transformer plays a crucial role in enhancing the
accuracy and efficiency of medium and long-term
PV  power predictions. The collaborative
contribution of these modules improves the
model’s performance in long-term forecasting
tasks, resulting in superior stability and accuracy
across different time scales compared to other
models.

The RMSE values of the photovoltaic power
prediction results from each model on the testing
set are visually represented in figure 9.

Table 2 presents the results of the ablation
experiments for each model. The data indicates
that all models outperform the traditional
Transformer, with the complete SP-Transformer
exhibiting the best performance across all time
steps. Model 1 shows a reduction in RMSE and
MAE of 25.8% and 28.8% respectively, at the 48-
hour prediction step compared to the Transformer,
and reductions of 1.8% and 4.3% at the 336-hour
step. The spatiotemporal positional encoding
provides the model with the ability to perceive the

(a) SP-Transformer (b) M1

o8
5

RMSE(MW)

spatiotemporal relationships between photovoltaic
sites, enhancing its capability to capture complex
spatiotemporal features. Model 2 achieves a
reduction in RMSE and MAE of 16.9% and
23.3% respectively, at the 48-hour prediction step,
and reductions of 11.3% and 16.1% at the 336-
hour step. The spatiotemporal probabilistic sparse
self-attention mechanism identifies active points
that significantly impact the current prediction.
This approach to computational efficiency,
making it more suitable for large-scale datasets
and real-time prediction tasks. Model 3
demonstrates a reduction in RMSE and MAE of
30.4% and 29.2% respectively, at the 48-hour
prediction step, and reductions of 13.8% and
14.5% at the 336-hour step. The feature pyramid-
based self-attention distillation, through multi-
scale feature extraction, reduces information loss
and enhances model stability. This improvement
strengthens the model’s ability to capture and
generalize complex patterns in photovoltaic power
data, helping it maintain accuracy and coherence
in long-term predictions, thus addressing the issue
of low efficiency in medium and long-term PV
power forecasting.
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Figure 9. Visualization of RMSE in ablation experiments.
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Table 2. Ablation experimental results.

48 h 96 h 168 h 336 h
method

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Ours 0.761 0.558 0.784 0.562 0.905 0.655 1.061 0.768
M1 0.854 0.663 0.913 0.706 1.053 0.811 1.209 0.952

M2 0.956 0.714 1.002 0.737 1.139 0.874 1.096 0.835

M3 0.800 0.659 0.885 0.706 0.987 0.800 1.061 0.835
Transformer 1.151 1.932 1.162 0.959 1.190 0.952 1.232 0.995

4. Conclusion

This paper presents the SP-Transformer model,
aimed at addressing the issues of insufficient
consideration of spatiotemporal relationships
between sites and the low predictive efficiency in
medium and long-term PV power forecasting. The
main contributions are as follows: First, the
introduction of spatiotemporal positional encoding
enriches the photovoltaic site data with temporal
and spatial information, enabling the model to
better capture the relative positional relationships
between sites. This encoding provides insights
into the spatiotemporal associations among
different sites, enhancing the model’s ability to
capture more complex spatiotemporal features. It
increases sensitivity to geographic differences
between sites and offers deeper contextual
understanding. Second, this paper proposes the
SpatiotemporalProbSparse self-attention
mechanism, which selects active points in the
spatiotemporal dimension to reduce model
complexity and better capture the spatiotemporal
correlations in the input data. This mechanism
selectively focuses on areas that significantly
impact the prediction task, improving the model’s
prediction accuracy while maintaining efficient
computational complexity. This design enhances
the model’s adaptability when processing large-
scale photovoltaic power data, providing greater
feasibility for practical applications. This paper
introduced a feature pyramid-based self-attention
distillation approach, which reduces information
loss through multi-scale feature extraction and
improves model stability. This allows the model
to consider spatiotemporal features across
different scales more comprehensively, better
adapting to various prediction scenarios. The
inclusion of self-attention distillation helps ensure
accuracy and consistency in long-term prediction
tasks. Finally, this paper demonstrates through
experiments that the SP-Transformer exhibits
superior performance in medium and long-term
PV power forecasting tasks.
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