Document Type: Original Article

Authors

1 Department of Mechanical Engineering, HSBPVT’S GOI COE-Parikrama, Kashti, Ahmednagar, MH, 414701, India

2 Department of Mechanical Engineering, Dr. D.Y. Patil Institute of Engineering, Management and Research, Pune, MH, 411044, India

3 School of Mechanical Engineering, VIT University, Vellore, Tamilnadu, 632014, India.

10.22044/rera.2020.9460.1025

Abstract

Exergy analysis of a 250 MW power plant is done in this study. Thermal performance analysis using MATLAB calculation tool has been done. Exergy destruction phenomenon and Exergetic efficiency is calculated for various components of 250 MW coal fired subcritical power plant. The calculated overall plant exergy efficiency is evaluated 34.75%. Besides, results also concluded that exergy destruction takes place in the steam generator 490.76 MW (93.07%) followed by the other components. The comparative study of heat loss ratio with respect to varying plant load is performed out of which condenser contribute to have major heat loss ratio. The outcomes of this research study will be beneficial for future researchers.

Keywords

[1] R. Kumar and A.K. Sharma and P.C. Tewari, “Performance Modeling of Furnace Draft Air Cycle in a THERMAL POWER PLANT,” Int. J. Eng. Sci. Technol., Vol. 3, No. 8, pp. 6792–6798, 2011.

[2] R. Kumar, “A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants,” Eng. Sci. Technol. an Int. J., Vol. 20, No. 1, pp. 283–292, 2017, doi: 10.1016/j.jestch.2016.08.018.

[3] R. Kumar, A. K. Sharma, and P. C. Tewari, “Thermal Performance and Economic Analysis of 210 MWe Coal-Fired Power Plant,” J. Termodyn., No. Article ID 520183, pp. 1–10, 2014.

[4] R. Kumar, R. Jilte, B. Mayank, and S. Manujender, “Steady-State Modelling and Validation of a Thermal Power Plant,” in Advances in Fluid and Thermal Engineering, Springer Singapore, 2019, pp. 511–519.

[5] R. Kumar, “Performance Evaluation of a Coal-fired Power Performance Evaluation of a Coal-fired Power Plant,” Int. J. Performability Eng., Vol. 9, No. 4, pp. 455–461, 2013.

[6] R. Kumar, A. K. Sharma, and P. . Tewari, “Markov approach to evaluate the availability simulation model for power generation system in a thermal power plant,” Int. J. Ind. Eng. Comput., Vol. 3, No. 5, pp. 743–750, 2012, doi: 10.5267/j.ijiec.2012.08.003.

[7] R. Kumar, R. Jilte, M. H. Ahmadi, and R. Kaushal, “A simulation model for thermal performance prediction of a coal-fired power plant,” pp. 1–13, 2019, doi: 10.1093/ijlct/cty059.

[8] R. Kumar, “Thermodynamic Modeling and Validation of a 210-MW Capacity Coal-Fired Power Plant,” Iran. J. Sci. Technol. Trans. Mech. Eng., 2016, doi: 10.1007/s40997-016-0025-5.

[9] R. Kumar, “Availability analysis of thermal power plant boiler air circulation system using Markov approach,” Decis. Sci. Lett., Vol. 3, pp. 65–72, 2014, doi: 10.5267/j.dsl.2013.08.001.

[10] I. Enterprise, “Redundancy optimisation of a coal fired power plant using simulated annealing technique Ravinder Kumar,” Vol. 4, No. 3, 2017.

[11] Wall. G., “Exergy flows in industrial processes,” Energy, Vol. 13, No. 2, pp. 197–208, 1998.

[12] A. D., “Sustainable energy for developing countries,” Energy Sustain. Dev., Vol. 7, No. 4, pp. 130–132, 2003.

[13] T. J. Kotas, The exergy method of thermal plant analysis, First. London: Butterworths, 1985.

[14] Z. Utlu and A. Hepbasli, “A review on analyzing and evaluating the energy utilization efficiency of countries,” Renew. Sustain. Energy Rev., Vol. 11, No. 1, pp. 1–29, 2007, doi: 10.1016/j.rser.2004.12.005.

[15] M. a. Rosen and R. Tang, “Improving steam power plant efficiency through exergy analysis: effects of altering excess combustion air and stack-gas temperature,” Int. J. Exergy, vol. 5, No. 1, p. 31, 2008, doi: 10.1504/IJEX.2008.016011.

[16] R. Kumar et al., “A review status on alternative arrangements of power generation energy resources and reserve in India,” Int. J. Low-Carbon Technol., pp. 1–17, 2019, doi: 10.1093/ijlct/ctz066.

[17] H. Olia, M. Torabi, M. Bahiraei, M. H. Ahmadi, M. Goodarzi, and M. R. Safaei, “Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art,” Appl. Sci., Vol. 9, No. 3, 2019, doi: 10.3390/app9030463.

[18] M. Sadeghzadeh, M. H. Ahmadi, M. Kahani, H. Sakhaeinia, H. Chaji, and L. Chen, “Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid,” Energy Sci. Eng., Vol. 7, No. 5, pp. 1649–1658, 2019, doi: 10.1002/ese3.381.

[19] H. Alizadeh, R. Ghasempour, M. B. Shafii, M. H. Ahmadi, W. M. Yan, and M. A. Nazari, “Numerical simulation of PV cooling by using single turn pulsating heat pipe,” Int. J. Heat Mass Transf., Vol. 127, pp. 203–208, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.06.108.

[20] A. Khatibi, F. Razi Astaraei, and M. H. Ahmadi, “Generation and combination of the solar cells: A current model review,” Energy Sci. Eng., Vol. 7, No. 2, pp. 305–322, 2019, doi: 10.1002/ese3.292.

[21] A. Mohammadi, K. Vandani, F. Joda, F. Ahmadi, and M. H. Ahmadi, “Exergoeconomic effect of adding a new feedwater heater to a steam power plant,” Mech. Ind., Vol. 18, No. 2, pp. 1–13, 2017, doi: 10.1051/meca/2016051.

[22] A. Mohammadi, K. Vandani, M. Bidi, and M. H. Ahmadi, “Energy , exergy and environmental analyses of a combined cycle power plant under part-load conditions,” Mech. Ind., Vol. 17, No. 6, pp. 1–14, 2016, doi: 10.1051/meca/2016019.

[23] M. A. Javadi, M. H. Ahmadi, and M. Khalaji, “Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector,” Environ. Prog. Sustain. Energy, No. July, 2019, doi: 10.1002/ep.13322.

[24] M. Chahartaghi, M. Kalami, M. H. Ahmadi, R. Kumar, and R. Jilte, “Energy and exergy analyses and thermoeconomic optimization of geothermal heat pump for domestic water heating,” Int. J. Low-Carbon Technol., Vol. 14, No. 2, pp. 108–121, 2019, doi: 10.1093/ijlct/cty060.

[25] A. Naeimi, M. Bidi, M. H. Ahmadi, R. Kumar, M. Sadeghzadeh, and M. Alhuyi Nazari, “Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory,” Therm. Sci. Eng. Prog., Vol. 9, No. June 2018, pp. 299–307, 2019, doi: 10.1016/j.tsep.2018.12.007.

[26] M. Akbari Vakilabadi, M. Bidi, A. F. Najafi, and M. H. Ahmadi, “Energy, Exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge Systems,” J. Therm. Anal. Calorim., Vol. 139, No. 2, pp. 1275–1290, 2020, doi: 10.1007/s10973-019-08463-7.

[27] M. A. Vakilabadi, M. Bidi, A. F. Najafi, and M. H. Ahmadi, “Exergy analysis of a hybrid solar-fossil fuel power plant,” Energy Sci. Eng., Vol. 7, No. 1, pp. 146–161, 2019, doi: 10.1002/ese3.265.

[28] R. Kumar, A. K. Sharma, and P. C. Tewari, “Cost analysis of a coal-fired power plant using the NPV method,” J. Ind. Eng. Int., Vol. 11, No. 4, pp. 495–504, 2015, doi: 10.1007/s40092-015-0116-8.

[29] P. A. and S. K. M. Ameri,y, “Exergy analysis of a 420MW combined cycle power plant,” Int. J. energy Res., Vol. 32, No. July 2007, pp. 175–183, 2008, doi: 10.1002/er.

[30] A. Bejan, Thermal design and optimization, First. Newyork: [1] H. H. Erdem, A. V. Akkaya, B. Cetin, A. Dagdas, S. H. Sevilgen, B. Sahin, I. Teke, C. Gungor, and S. Atas, “Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey,” Int. J. Therm. Sci., Vol. 48, No. 11, , 1996.

[31] S. C. Kaushik and O. K. Singh, “Estimation of chemical exergy of solid, liquid and gaseous fuels used in thermal power plants,” J. Therm. Anal. Calorim., Vol. 115, No. 1, pp. 903–908, 2014, doi: 10.1007/s10973-013-3323-9.

[32] D. Z. & M. S. L. D. Mitrovića, “Energy and Exergy Analysis of a 348.5 MW Steam Power PlantNo Title,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 32, No. Issue 11, p. pages 1016-1027, 2010.