Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Plateau State Polytechnic Barkin Ladi, Nigeria.

2 Department of Computer Engineering Plateau state, Nigeria.

3 Department of Mechanical Engineering, University of Jos, Nigeria.

4 Centre for Signal and Image Processing, University of Strathclyde, Glasgow, United Kingdom.

Abstract

This research proposes and evaluates an enhanced open-loop photovoltaic evacuated tube solar thermal collector hybrid energy system based on the developed multi-objective energy management strategy that manages and coordinates the hybrid system with a randomly unreliable grid power source to meet the health center's energy demand using TRNSYS software. A technical assessment of the system shows that the system is capable of meeting system load with a solar fraction of 67% even on days with an overcast sky level of radiation as low as 250 W/m2 and only 37.5% grid power availability. Overall, the system has a solar fraction of 80%. The implication of an 80% solar fraction is the large environmental benefit of reducing emissions and improved system economic viability, indicating that the formulated energy management achieves the goal of promoting renewable energy sources in the hybrid system. An economic analysis of the system revealed that it has a payback period of 6.9 years and Net Present Value of $36,985 at the end of the project's lifetime. This demonstrates that the upgrade of the traditional hybrid PVT with an evacuated tube collector operated based on the developed energy management strategy has met the goal of minimising emissions with significant environmental and economic savings.

Keywords

Main Subjects

[1]     L. O. Aghenta and M. T. Iqbal, “Design and Dynamic Modelling of a Hybrid Power System for a House in Nigeria,” Int. J. Photoenergy, Vol. 2019, pp. 1–13, 2019, doi: 10.1155/2019/6501785.
 
[2]     A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, A. Azmi, and M. A. M. Ramli, “Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq,” Renew. Energy, Vol. 138, pp. 775–792, 2019, doi: 10.1016/j.renene.2019.02.004.
 
[3]     A. Aly, M. Moner-Girona, S. Szabó, A. B. Pedersen, and S. S. Jensen, “Barriers to Large-scale Solar Power in Tanzania,” Energy Sustain. Dev., vol. 48, pp. 43–58, 2019, doi: 10.1016/j.esd.2018.10.009.
 
[4]     M. Herrando, A. Ramos, J. Freeman, I. Zabalza, and C. N. Markides, “Technoeconomic modelling and optimisation of solar combined heat and power systems based on flat-box PVT collectors for domestic applications,” Energy Convers. Manag., Vol. 175, No. March, pp. 67–85, 2018, doi: 10.1016/j.enconman.2018.07.045.
 
[5]     C. O. Okoye and B. C. Oranekwu-Okoye, “Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa,” Renew. Sustain. Energy Rev., Vol. 82, No. July 2016, pp. 2537–2547, 2018, doi: 10.1016/j.rser.2017.09.054.
 
[6]     O. Rodriguez-Hernandez, M. Martinez, C. Lopez-Villalobos, H. Garcia, and R. Campos-Amezcua, “Techno-economic feasibility study of small wind turbines in the Valley of Mexico metropolitan area,” Energies, Vol. 12, No. 5, pp. 1–26, 2019, doi: 10.3390/en12050890.
 
[7]     A. Behzadi, E. Thorin, C. Duwig, and S. Sadrizadeh, “Supply-demand side management of a building energy system driven by solar and biomass in Stockholm: A smart integration with minimal cost and emission,” Energy Convers. Manag., vol. 292, no. July, p. 117420, 2023, doi: 10.1016/j.enconman.2023.117420.
 
[8]     F. J. Vivas, A. De las Heras, F. Segura, and J. M. Andújar, “A review of energy management strategies for renewable hybrid energy systems with hydrogen backup,” Renew. Sustain. Energy Rev., Vol. 82, No. April 2016, pp. 126–155, 2018, doi: 10.1016/j.rser.2017.09.014.
 
[9]     A. F. Crossland, O. H. Anuta, and N. S. Wade, “A socio-technical approach to increasing the battery lifetime of off-grid photovoltaic systems applied to a case study in Rwanda,” Renew. Energy, Vol. 83, pp. 30–40, Nov. 2015, doi: 10.1016/J.RENENE.2015.04.020.
 
[10]  P. García, J. P. Torreglosa, L. M. Fernández, and F. Jurado, “Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic,” Int. J. Hydrogen Energy, vol. 38, no. 33, pp. 14146–14158, Nov. 2013, doi: 10.1016/J.IJHYDENE.2013.08.106.
 
[11]  M. S. Behzadi and M. Niasati, “Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different power management strategies and sizing approaches,” Int. J. Hydrogen Energy, Vol. 40, No. 1, pp. 538–548, Jan. 2015, doi: 10.1016/J.IJHYDENE.2014.10.097.
 
[12]  G. Cau, D. Cocco, M. Petrollese, S. Knudsen Kær, and C. Milan, “Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system,” Energy Convers. Manag., Vol. 87, pp. 820–831, Nov. 2014, doi: 10.1016/J.ENCONMAN.2014.07.078.
 
[13]  A. Merabet, A. Al-Durra, and E. F. El-Saadany, “Energy management system for optimal cost and storage utilization of renewable hybrid energy microgrid,” Energy Convers. Manag., Vol. 252, p. 115116, Jan. 2022, doi: 10.1016/J.ENCONMAN.2021.115116.
 
[14]  R. Kaluthanthrige and A. D. Rajapakse, “Demand response integrated day-ahead energy management strategy for remote off-grid hybrid renewable energy systems,” Int. J. Electr. Power Energy Syst., Vol. 129, p. 106731, Jul. 2021, doi: 10.1016/J.IJEPES.2020.106731.
 
[15]  S. Bhattacharjee and C. Nandi, “Design of a voting based smart energy management system of the renewable energy based hybrid energy system for a small community,” Energy, Vol. 214, p. 118977, Jan. 2021, doi: 10.1016/J.ENERGY.2020.118977.
 
[16]  M. Jafari and Z. Malekjamshidi, “Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method,” Renew. Energy, Vol. 146, pp. 254–266, Feb. 2020, doi: 10.1016/J.RENENE.2019.06.123.
 
[17]  P. Rullo, L. Braccia, P. Luppi, D. Zumoffen, and D. Feroldi, “Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems,” Renew. Energy, vol. 140, pp. 436–451, 2019, doi: 10.1016/j.renene.2019.03.074.
 
[18]  A. Mohamed and O. Mohammed, “Real-time energy management scheme for hybrid renewable energy systems in smart grid applications,” Electr. Power Syst. Res., Vol. 96, pp. 133–143, Mar. 2013, doi: 10.1016/J.EPSR.2012.10.015.
 
[19]  Q. Ma, X. Huang, F. Wang, C. Xu, R. Babaei, and H. Ahmadian, “Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers,” Energy, Vol. 240, p. 122503, Feb. 2022, doi: 10.1016/J.ENERGY.2021.122503.
 
[20]  L. Xia, Z. Ma, G. Kokogiannakis, S. Wang, and X. Gong, “A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors,” Appl. Energy, Vol. 228, pp. 1399–1412, Oct. 2018, doi: 10.1016/J.APENERGY.2018.07.026.
 
[21]  W. Liu et al., “Smart Micro-grid System with Wind/PV/Battery,” Energy Procedia, Vol. 152, pp. 1212–1217, 2018, doi: 10.1016/j.egypro.2018.09.171.
 
[22]  N. H. Saad, A. A. El-Sattar, and A. E. A. M. Mansour, “A novel control strategy for grid connected hybrid renewable energy systems using improved particle swarm optimization,” Ain Shams Eng. J., Vol. 9, No. 4, pp. 2195–2214, 2018, doi: 10.1016/j.asej.2017.03.009.
 
[23]  A. Allouhi, “A novel grid-connected solar PV-thermal/wind integrated system for simultaneous electricity and heat generation in single family buildings,” J. Clean. Prod., Vol. 320, No. July, p. 128518, 2021, doi: 10.1016/j.jclepro.2021.128518.
 
[24]  C. O. Anyaeche, T. Akappo, and A. O. Adeodu, “Optimisation of Hybrid Energy System Production Parameters for Electricity Power Generation in Nigeria,” Energy Power Eng., Vol. 10, pp. 198–211, 2018, doi: 10.4236/epe.2018.105014.
 
[25]  International Finance Corporation, “Off-grid Solar Market Trends Report 2018,” Washington, D.C., 2018. doi: 10.1017/CBO9781107415324.004.
 
[26]  D. Jonas, M. Lämmle, D. Theis, S. Schneider, and G. Frey, “Performance modeling of PVT collectors: Implementation, validation and parameter identification approach using TRNSYS,” Sol. Energy, Vol. 193, No. September, pp. 51–64, 2019, doi: 10.1016/j.solener.2019.09.047.
 
[27]  A. Zarrella, G. Emmi, J. Vivian, L. Croci, and G. Besagni, “The validation of a novel lumped parameter model for photovoltaic thermal hybrid solar collectors: a new TRNSYS type,” Energy Convers. Manag., Vol. 188, No. March, pp. 414–428, 2019, doi: 10.1016/j.enconman.2019.03.030.
 
[28]  M. B. Sanjareh, M. H. Nazari, G. B. Gharehpetian, R. Ahmadiahangar, and A. Rosin, “Optimal scheduling of HVACs in islanded residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells,” Sustain. Energy, Grids Networks, Vol. 25, p. 100424, Mar. 2021, doi: 10.1016/J.SEGAN.2020.100424.
 
[29]  D. Jie, J. Seuss, L. Suneja, and R. G. Harley, “SoC feedback control for wind and ess hybrid power system frequency regulation,” IEEE J. Emerg. Sel. Top. Power Electron., Vol. 2, No. 1, pp. 79–86, Mar. 2014, doi: 10.1109/JESTPE.2013.2289991.
 
[30]  S. G. Sigarchian, “Small Scale Decentralized Energy Systems optimization and performance analysis,” KTH School of Industrial Engineering and Management, 2018 [Online]. Available: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1206702&dswid=-4627.
 
[31]  W. Pang, B. C. Duck, C. J. Fell, G. J. Wilson, W. Zhao, and H. Yan, “Influence of multiple factors on performance of photovoltaic-thermal modules,” Sol. Energy, Vol. 214, No. November 2020, pp. 642–654, 2021, doi: 10.1016/j.solener.2020.11.050.
 
[32]  H. B. C. El Hocine, K. Touafek, F. Kerrour, H. Haloui, and A. Khelifa, “Model Validation of an Empirical Photovoltaic Thermal (PV/T) Collector,” 2015. doi: 10.1016/j.egypro.2015.07.749.
 
[33]  S. Bae and Y. Nam, “Comparison between experiment and simulation for the development of a Tri-generation system using photovoltaic-thermal and ground source heat pump,” Energy Build., Vol. 231, p. 110623, 2021, doi: 10.1016/j.enbuild.2020.110623.
 
[34]  P. Eguía-Oller, S. Martínez-Mariño, E. Granada-Álvarez, and L. Febrero-Garrido, “Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations,” Energy Build., Vol. 249, p. 111197, Oct. 2021, doi: 10.1016/J.ENBUILD.2021.111197.
 
[35]  A. Rasheed, C. S. Kwak, H. T. Kim, and H. W. Lee, “Building energy an simulation model for analyzing energy saving options of multi-span greenhouses,” Appl. Sci., Vol. 10, No. 19, pp. 1–23, 2020, doi: 10.3390/app10196884.
 
[36]  A. Mehmood, A. Waqas, Z. Said, S. M. A. Rahman, and M. Akram, “Performance evaluation of solar water heating system with heat pipe evacuated tubes provided with natural gas backup,” Energy Reports, Vol. 5, pp. 1432–1444, Nov. 2019, doi: 10.1016/J.EGYR.2019.10.002.
 
[37]  S. A. Klein et al., TRNSYS 18: A Transient System Simulation Program, Solar Energy Laboratory. Madison, WI 53703 – U.S.A.: University of Wisconsin, 2017.
 
[38]  A. N. Al-Shamani, K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan, “Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions,” Energy Convers. Manag., Vol. 124, pp. 528–542, 2016, doi: 10.1016/j.enconman.2016.07.052.
 
[39]  F. J. Diez, L. M. Navas-Gracia, A. Martínez-Rodríguez, A. Correa-Guimaraes, and L. Chico-Santamarta, “Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates,” Sol. Energy, Vol. 188, pp. 1320–1331, Aug. 2019, doi: 10.1016/j.solener.2019.07.022.
 
[40]  Y. H. Li and W. C. Kao, “Performance analysis and economic assessment of solar thermal and heat pump combisystems for subtropical and tropical region,” Sol. Energy, Vol. 153, pp. 301–316, 2017, doi: 10.1016/j.solener.2017.05.067.
 
[41]  S. Hoseinzadeh and R. Azadi, “Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran,” J. Renew. Sustain. Energy, Vol. 9, No. 4, 2017, doi: 10.1063/1.5000288.
 
[42]  H. A. Kazem, T. Khatib, and K. Sopian, “Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman,” Energy Build., Vol. 61, pp. 108–115, 2013, doi: 10.1016/j.enbuild.2013.02.011.
 
[43]  C. Sam-Amobi, O. V. Ekechukwu, and C. B. Chukwuali, “A preliminary assessment of the energy related carbon emissions associated with hotels in Enugu Metropolis Nigeria,” AFRREV STECH An Int. J. Sci. Technol., Vol. 8, No. 2, pp. 19–30, 2019, doi: 10.4314/stech.v8i2.2.
 
[44]  C. Outline, Life-Cycle Cost and Energy Productivity Analyses. Elsevier Inc., 2018. doi: 10.1016/B978-0-12-849869-9/00005-3.
 
[45]  J. Liu, S. Cao, X. Chen, H. Yang, and J. Peng, “Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage,” Appl. Energy, Vol. 281, No. June 2020, p. 116038, 2021, doi: 10.1016/j.apenergy.2020.116038.
 
[46]  P. Bendt, Appropriate sizing of solar water heating system. Springfield, VA: Solar Energy Research Institute, 1980. [Online]. Available: https://www.nrel.gov/docs/legosti/old/320.pdf
 
[47]  S. Liu, B. Hao, X. Chen, C. Yao, and W. Zhou, “Analysis on limitation of Using Solar Fraction Ratio as Solar Hot Water System Design and Evaluation Index,” Energy Procedia, Vol. 70, pp. 353–360, 2015, doi: 10.1016/j.egypro.2015.02.134.
 
[48]  S. Hosouli et al., “Evaluation of a solar photovoltaic thermal (PVT) system in a dairy farm in Germany,” Sol. Energy Adv., Vol. 3, No. January, p. 100035, 2023, doi: 10.1016/j.seja.2023.100035.
 
[49]  H. O. Omotoso, A. M. Al-Shaalan, H. M. H. Farh, and A. A. Al-Shamma’a, “Techno-Economic Evaluation of Hybrid Energy Systems using Artificial Ecosystem-based Optimization with Demand-side Management,” Electron., Vol. 11, No. 2, 2022, doi: 10.3390/electronics11020204.
 
[50]  UNEP, “Emissions Gap Report 2019: Global progress report on climate action,” 2019. [Online]. Available: https://www.unep.org/interactive/emissions-gap-report/2019/index.php
 
[51]  J. Rouleau and L. Gosselin, “Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building,” Appl. Energy, Vol. 287, No. February, p. 116565, 2021, doi: 10.1016/j.apenergy.2021.116565.
 
[52]  M. Herrando, A. Ramos, J. Freeman, I. Zabalza, and C. N. Markides, “Technoeconomic modelling and optimisation of solar combined heat and power systems based on flat-box PVT collectors for domestic applications,” Energy Convers. Manag., Vol. 175, pp. 67–85, Nov. 2018, doi: 10.1016/j.enconman.2018.07.045.
 
[53]  M. Herrando, A. M. Pantaleo, K. Wang, and C. N. Markides, “Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications,” Renew. Energy, Vol. 143, pp. 637–647, Dec. 2019, doi: 10.1016/j.renene.2019.05.004.
 
[54]  Made-in-China, “Solar pump system controller,” 2021.
https://mcabattery.en.made-in-china.com/product/LvRmrfouRzYg/China-High-Quality-24V-110ah-Gel-Sealed-Lead-Acid-Battery.html (accessed Mar. 05, 2021).
 
[55]  U. K. Elinwa, J. E. Ogbeba, and O. P. Agboola, “Cleaner energy in Nigeria residential housing,” Results Eng., Vol. 9, No. January 2020, p. 100103, 2021, doi: 10.1016/j.rineng.2020.100103.
 
[56]         GlobalPetrolPrice.com, “Nigeria Diesel prices,” GlobalPetrolPrice.com, 2021. https://www.globalpetrolprices.com/Nigeria/diesel_prices/ (accessed Mar. 04, 2021).