F. Salek; M. Rahnama; H. Eshghi; M. Babaie; M. M. Naserian
Abstract
In this study, a solar driven alkaline electrolyzer producer of hydroxy gas is proposed which is integrated with photovoltaic panels with single-axis north-south solar tracking system. The main novelty of this work is providing transient analysis of integration of alkaline electrolyzer to the PV panels ...
Read More
In this study, a solar driven alkaline electrolyzer producer of hydroxy gas is proposed which is integrated with photovoltaic panels with single-axis north-south solar tracking system. The main novelty of this work is providing transient analysis of integration of alkaline electrolyzer to the PV panels equipped with solar tracking system. Furthermore, the transient model of the alkaline electrolyzer is employed to calculate its operating temperature, hydroxy production rate and the other operational parameters at various hours of the day. The electrolyzer and PV panels with tracking system are modelled in EES software. It is assumed that the system is installed in Shahrood city, therefore, the geographical data this city is used for seasonal analysis. The effective area of electrolyzer electrodes and PV panels is also assumed to be fixed at 0.25m2 and 50m2, respectively, in this study. Based on the results, employment of solar tracking system resulted in significant increment of PV panels power absorption rate resulting in power increment up to 4.2kW in summer. On the other hand, the transient analysis of the proposed alkaline electrolyzer showed that the maximum operating temperature of which reaches 80oC at around 12 AM in the summer cause of achieving maximum electrical current peak in summer. Therefore, an efficient cooling system should be employed in summer for decrement of alkaline electrolyzer temperature. The proposed system is capable of producing 7.6m3/day, 10.4m3/day, 7.2m3/day and 4.1m3/day hydroxy gas in spring, summer, fall, and winter, consecutively.
F. Salek; Alireza Eskandary Nasrabad; M. M. Naserian
Abstract
In this paper, a novel thermal driven supercharging system for downsizing of a turbocharged diesel engine is proposed. Furthermore, Kalina cycle has been used as waste heat recovery system to run the mounted supercharging system. The waste heat of air in engine exhaust and intake pipes is converted to ...
Read More
In this paper, a novel thermal driven supercharging system for downsizing of a turbocharged diesel engine is proposed. Furthermore, Kalina cycle has been used as waste heat recovery system to run the mounted supercharging system. The waste heat of air in engine exhaust and intake pipes is converted to cooling and mechanical power by Kalina cycle. The mechanical power produced by Kalina cycle is transferred to an air compressor to charge extra air to the engine for generating more power. This feature can be used for downsizing the turbo-charged heavy duty diesel engine. In addition, the heat rejected from engine intercooler is transferred to Kalina cycle vapor generator component, and part of engine exhaust waste heat is also used for superheating Kalina working fluid before entering engine. Then, first and second law analysis are performed to assess the operation of the engine in different conditions. Moreover, an economic model is provided for the Kalina cycle which is added to engine as supplementary component. Finally, simple payback and Net present value methods are used for economic evaluation of the added supplementary system. According to the results, mounting the novel waste heat driven air charging system has resulted in increment of air mass flow rate which leads to extra power generation (between 9 kW and 25 kW). The payback period and profitability index of the project are approximately 3.81 year and 1.26, consecutively.