T. Oyegoke; E. Obadiah; Y. S. Sardauna MOHAMMED; O. Alao BAMIGBALA; O. A. Oluwarotimi OWOLABI; T. Tongshuwar GEOFFREY; A. Oyegoke; A. Onadeji
Abstract
Increasing energy demand and fossil fuel dependency have increased interest in bioethanol production in recent years. The use of conventional saccharine and starchy materials for ethanol production is prohibitive as it is a threat to food security. As such, rice husk poses to be of great value, providing ...
Read More
Increasing energy demand and fossil fuel dependency have increased interest in bioethanol production in recent years. The use of conventional saccharine and starchy materials for ethanol production is prohibitive as it is a threat to food security. As such, rice husk poses to be of great value, providing a means to utilize waste. This study assessed the economic viability of bioethanol production from rice husk waste, which entails capital and manufacturing cost estimation, and profitability of this process. Further cost optimization studies were carried to determine the material cost, government subsidy, and tax potential to maximize the overall financial benefit (i.e., ROI and net profit) of the bioethanol production. Findings from this study indicated that transforming rice husk into bioethanol would not be economically feasible due to negative net profit (i.e., a loss on investment) obtained from its profitability analysis. Further studies indicated that the project was susceptible to the raw material cost, subsidy, and tax rate. Result obtained from the optimization studies indicates that if the rice husk sales as low as 1.38 US$/kg, and Government introduced 25% subsidy and tax-free policy on bioethanol production, the project would yield a net worth of US$ 5 million per annum, payback period of 5.5 years, and a return on investment of 16.1%. Therefore, this study recommends introducing a subsidy and tax-waiver policy for biofuels production to encourage investors and promote cleaner fuels in emerging nations.
T. Oyegoke; M.Y. Sardauna; H.A. Abubakar; E. Obadiah
Abstract
Bio-ethanol is a clean and renewable fuel that is significantly gaining attention, mainly via its major environmental benefits produced from diverse resources. The campaign for the establishment of biorefineries and encouragement of fossil fuels is gradually gaining greater attention. This research seeks ...
Read More
Bio-ethanol is a clean and renewable fuel that is significantly gaining attention, mainly via its major environmental benefits produced from diverse resources. The campaign for the establishment of biorefineries and encouragement of fossil fuels is gradually gaining greater attention. This research seeks to comparatively investigates material requirement, production yield, and total equipment cost involved in the rice-husk and maize-cob transformation into bioethanol fuel for large-scale production using process modeling and simulation study approach to promote potential investors' interest. This analysis was carried out using a simulator (Aspen HYSYS) and a computational package (MATLAB). The evaluation entails modeling, simulating, material, and energy analysis, including process equipment sizing and cost for the plants. Comparative material analysis of the yield from the model process for the use of biomasses reveals that 9.94kg and 7.32kg of fuel-grade bioethanol would be obtained using 0.03kg and 0.02kg of enzymes for every 1kg of rice husk and maize cob charge in the plant, respectively, per hour. Analysis of the plants' energy flow shows that the maize cob transformation into bioethanol fuel required more energy than the rice husk-based plant confirming maize cob conversion to be more energy-intensive than rice husk. Moreover, the equipment cost analysis indicated that it would cost $ 4739.87 and $ 1757.36 to process a kilogram of biomass (rice husk and maize cob) into fuel-grade bioethanol, respectively, per hour. Ultimately, this study's findings identify rice husk's use to be of high yield while maize cob would be making the production less capital intensive.