Shahrzad Talebsafa; Masoud Taheri Shahraeini; Xiaoshan Yang; Mohammadreza Rabiei
Abstract
Thermal comfort is one of the most important factors affecting the quality of outdoor space. This work investigates the effect of shade on outdoor thermal comfort during the hot season. For this purpose, meteorological measurement and questionnaire surveys are conducted simultaneously at four points ...
Read More
Thermal comfort is one of the most important factors affecting the quality of outdoor space. This work investigates the effect of shade on outdoor thermal comfort during the hot season. For this purpose, meteorological measurement and questionnaire surveys are conducted simultaneously at four points of the university campus in the cold semi-arid climate of Shahrood, Iran. Then the ENVI-met V4 is validated and implemented to examine the impact of different shading scenarios on outdoor thermal comfort. The neutral physiological equivalent temperature (PET) and the upper boundary of the PET comfort range are obtained at 21.9 °C and 26.9 °C, respectively. The results demonstrate that the plant shade creates the most acceptable thermal environment. Also shading cause a significant reduction in the PET value and thermal stress, while increasing the comfort levels and the comfort hours during the sunny days. Furthermore, the simulation results indicate that creating shade in the open space by trees contribute to lower level of mean radiant temperature up to 24.79 °C and up to 13.7 °C for PET. Moreover, a maximum mitigation effect of an architectural shade is obtained at 32.6 °C for mean radiant temperature and 17 °C for PET. The highest reduction of PET (17.2 °C) is achieved by the combination of trees and the architectural shade. The outcomes of this research work provide useful design recommendations to improve outdoor thermal comfort.