A. R. Babaie Pirouziana; R. Zahedi; A. Ahmadi; N. Olya
Abstract
Recent studies have shown that the integration of power generation, seawater desalination, and industrial gas production can significantly reduce costs and generate clean energy on a large scale. On the other hand, by the growth of population, transportation has been known as a major consumer of fuel ...
Read More
Recent studies have shown that the integration of power generation, seawater desalination, and industrial gas production can significantly reduce costs and generate clean energy on a large scale. On the other hand, by the growth of population, transportation has been known as a major consumer of fuel and energy leading to higher energy demand, increased total costs and, more pollutant components. In this study, the effect of merging the transportation sector to the integration system on energy production and total costs by 2050 in 5-year time steps has been investigated based on an optimization method and a linear model simulation. The modeling was under three senarios :a) Integrated scenario, b) Current Policy Scenario and c) Combined integrated scenario. Renewable systems are considered to be the energy suppliers of power generation, seawater desalination, industrial gas and, transportation sectors. The results showed that the addition of the transportation sector had a significant effect on reducing the final cost from 41 €/MWh to 36 €/MWh which was attributed to the increased generated energy and the severe price drop of power generation technologies as a result of this merging. Also, the share of various renewable technologies in energy generation showed that in the Combined-Integrated scenario, the share of revenues especially solar PV was increased 2% from the Integrated scenario. The results revealed that the installation capacity had a 32% growth compared to the Integrated scenario and 90% compared to the CPS scenario.