Geothermal Energy Systems
Prabin Haloi; Ankit Kumar; Joyshree Dutta; Desire Fadzi Makunike
Abstract
The application of a geofluid is primarily characterized by its geofield conditions and locations. One such application of geofluid is in power generation using suitable energy conversion systems. In this study, a thermodynamic model of a double-flash geothermal power plant (DFGPP) has been developed ...
Read More
The application of a geofluid is primarily characterized by its geofield conditions and locations. One such application of geofluid is in power generation using suitable energy conversion systems. In this study, a thermodynamic model of a double-flash geothermal power plant (DFGPP) has been developed to evaluate its performance which is mainly based on the geofluid of the Puga valley of Ladakh region in the Indian peninsula. The present study investigates the possible use of the DFGPP in the region through application of the exergy tool of the second law of thermodynamics. Under the Puga geofluid conditions, the energy and exergy rates, thermal losses, exergy destruction, and thermal and exergetic efficiencies are evaluated. From the thermal analysis results of the DFGPP, the condenser has the maximum energy loss with 97.08% of the overall loss, followed by low pressure turbine (LPT) and the high pressure turbine (HPT) with minimal energy rate losses of 2.28 % and 0.63 % respectively. However, negligible losses in energy are found to occur in the mixing devices, pump and the fluid separators. The maximum rate of exergy destruction occurs in the LPT with 38.95 % and least in the low pressure separator (LPS). The DFGPP operated with energy and exergy efficiencies of 9.52% and 48.39% approximately, producing a net output work of 3.9 MW. The overall cycle exergy destruction is found at 5.4% of the total energy losses. The use of DFGPP systems in the Puga geofield can be a suitable option in power generation.
Low-carbon Technologies
M. Jalili; R. Cheraghi; M. M. Reisi; R. Ghasempour
Abstract
Cement plants are one of the massive energy consumers and greenhouse gas producers. Processes that are carried out in a cement factory have considerable energy losses which are mostly happening because of exhausted gases and airflow for cooling the clinker. Energy consumption in a regular plant is 25% ...
Read More
Cement plants are one of the massive energy consumers and greenhouse gas producers. Processes that are carried out in a cement factory have considerable energy losses which are mostly happening because of exhausted gases and airflow for cooling the clinker. Energy consumption in a regular plant is 25% electrical and 75% thermal. Therefore, the main goal of this study is to represent a thermal recycling system in cement plants to generate power from high-temperature exhaust gases from the preheater and cooler’s high-temperature air. Thermodynamic analysis has been carried out by EES software and exergy efficiency and exergy destruction of each component of the system have been obtained. Moreover, a parametric study on the suggested cycle has been used which obtained results shows that if the input temperature and pressure of turbines get closer to the critical point of the expanded working fluid in turbines, the rate of net output work increases which lead to increasing of exergy efficiency of the whole system. The increased network of the cycle was almost 20% which would rise from 3497 kW to 4186 kW and exergy efficiency would rise from 38% to 45.94%.