Electricity Generation by Green Energy Sources
Rahmat Adiprasetya Al Hasibi; Bagustama Hamka
Abstract
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system ...
Read More
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system is critical in determining whether or not fish farmers can harvest well. An electric motor drives the water wheel in the aeration system, circulating oxygen in the fishpond. Based on the design, operation, and economic parameters, a comparison is made between the proposed system, namely the PV system, and the current system, namely the grid with a diesel generator as a backup. The nominal discount rate, diesel fuel price, and grid reliability level have all been subjected to sensitivity analysis. The Hybrid Optimization of Multiple Energy Resources software was used for the study. The results show that the on-grid PV system can continuously provide electricity to meet the demand for fish farming. The proposed system has a net present cost that is 20% lower than the net present cost of the current system. The cost of energy generated by the on-grid PV system is also 27% less than the cost of energy generated by the current system. Changes in fuel prices do not result in changes in net present cost for all levels of grid reliability to produce continuity in electricity supply. The nominal discount rate strongly influences the net present cost, the higher the nominal discount rate, the lower the resulting net present cost.
Low-carbon Technologies
F. Shateri Aliabad; Y. Ebazadeh; R. Alayi; I. Suwarno; A. Najafi; S. Ollah Mohammadi-Aylar
Abstract
In this research, technical and economic analysis of the use of storage devices in the hybrid system of wind and solar is performed with the aim of providing a maximum electrical load of residential buildings. To this aim, two scenarios of grid-connected and off-grid system have been studied. two parameters ...
Read More
In this research, technical and economic analysis of the use of storage devices in the hybrid system of wind and solar is performed with the aim of providing a maximum electrical load of residential buildings. To this aim, two scenarios of grid-connected and off-grid system have been studied. two parameters of high reliability and cost per production capacity were used. According to these two parameters, due to the low cost of grid energy and the high cost of purchasing the second scenario cell was selected with the grid-connected system approach. Based on this system, the final generation that has a surplus of production sells the energy to the network and uses the network to supply the load when there is a lack of power to supply the load. According to the cases mentioned in the second scenario, more than 50% of the requested load is supplied by the photovoltaic cell, which indicates the high potential of the study area. For the selected system, the return on investment was 7.53 years, considering the cost of energy is 0.13 $/kWh