Document Type : Technical Note

Authors

1 College of Mechanics and Energy, Shahid Beheshti University,Tehran, Iran.

2 University of Tehran, Tehran, Iran.

3 School of Mechanical Engineering, Lovely Professional University, Phagwara-14441.

4 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

In this research, a plan to implement a zero-energy building (ZEB) for a hot and dry climate region of Iran (Yazd) is introduced and a comparison with a typical house of that climate is performed. Based on climate conditions, several active or passive methods are available in order to create a balance between energy supply and demand, namely improving wall insulations by using efficient heating/cooling devices, using solar energy, utilizing energy storage devices, and etc. Here, the SketchUp software is employed to present the plot of the selected building. In addition, one of the interfaces of Energy plus software called "BEOpt" is used for performing energy and economic analyses on the fast-constructed and pre-fabricated schemes. Considering the equipment’s world price, the results demonstrate that the zero-energy building scheme in selected climate conditions is applicable and the payback period is estimated to be about 5.5 years. In addition, replacing the typical buildings with a ZEB will decrease carbon dioxide emissions by about 27.4 metric tons/yr.

Keywords

Main Subjects

[1] Santamouris M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol Energy 2016;128:61–94. doi:10.1016/J.SOLENER.2016.01.021.
[2] Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low-Carbon Technol 2018:1–6. doi:10.1093/ijlct/cty026.
[3] Rincón Casado A, de la Flor F. 3D internal forced convection heat-transfer correlations from CFD for building performance simulation. Eng Appl Comput Fluid Mech 2018;12:553–67. doi:10.1080/19942060.2018.1476267.
[4] Ahmadi A, Esmaeilion F, Esmaeilion A, Ehyaei MA, Silveira JL. Benefits and limitations of waste-to-energy conversion in Iran. J Renew Energy Res Appl 2019;1:27–45. doi:10.22044/RERA.2019.8666.1007.
[5] Ahmadi MH, Ahmadi MA, Sadaghiani MS, Ghazvini M, Shahriar S, Alhuyi Nazari M. Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: A review. Environ Prog Sustain Energy n.d.;0. doi:10.1002/ep.12802.
[6] Narayanan M. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India. Int J Renew Energy Dev 2017;6:253. doi:10.14710/ijred.6.3.253-262.
[7] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: A critical review. Energy Sci Eng 2018:1–22. doi:10.1002/ese3.239.
[8] Jäger-Waldau A, European Commission. Joint Research Centre. Institute for Energy and Transport. PV status report 2014. Publications Office; 2014.
[9] Hu M. Does zero energy building cost more? – An empirical comparison of the construction costs for zero energy education building in United States. Sustain Cities Soc 2019;45:324–34. doi:10.1016/J.SCS.2018.11.026.
[10] Lin Y, Chiang C, Lai C. Energy Efficiency and Ventilation Performance of Ventilated BIPV Walls. Eng Appl Comput Fluid Mech 2011;5:479–86. doi:10.1080/19942060.2011.11015387.
[11] Bensenouci A, Benchatti A, Bounif A, Medjelledi A. Study of the energy efficiency in building house using the DOE-2E and EE4 softwares simulation. Int J Heat Technol 2009;27:57–63. doi:10.18280/ijht.270209.
[12] Delmastro C, Mutani G, Schranz L, Vicentini G. the Role of Urban Form and Socio-Economic Variables for Extimating the Building Energy Savings Potential At the Urban Scale. Int J Heat Technol 2016;33:91–100. doi:10.18280/ijht.330412.
[13] Yang X, Zhang S, Xu W. Impact of zero energy buildings on medium-to-long term building energy consumption in China. Energy Policy 2019;129:574–86. doi:10.1016/J.ENPOL.2019.02.025.
[14] Boemi S-N, Irulegi O, Santamouris M (Matheos). Energy performance of buildings : energy efficiency and built environment in temperate climates. n.d.
[15] Beigzadeh M, Pourfayaz F, Pourkiaei SM. Modeling Heat and Power Generation for Green Buildings based on Solid Oxide Fuel Cells and Renewable Fuels ( Biogas ). J Renew Energy Res Appl 2019;1:55–63. doi:10.22044/RERA.2019.8985.1010.
[16] Kamari ML, Isvand H, Nazari MA. Applications of Multi-Criteria Decision-Making ( MCDM ) Methods in Renewable Energy Development : A Review. J Renew Energy Res Appl 2019;1:47–54. doi:10.22044/RERA.2019.8541.1006.
[17] Yi H, Srinivasan RS, Braham WW, Tilley DR. An ecological understanding of net-zero energy building: Evaluation of sustainability based on emergy theory. J Clean Prod 2017;143:654–71. doi:10.1016/J.JCLEPRO.2016.12.059.
[18] Moschetti R, Brattebø H, Sparrevik M. Exploring the pathway from zero-energy to zero-emission building solutions: A case study of a Norwegian office building. Energy Build 2019;188–189:84–97. doi:10.1016/J.ENBUILD.2019.01.047.
[19] Guan L. Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming. Build Environ 2012;55:8–19.doi:10.1016/J.BUILDENV.2011.11.013.
[20] Ren Z, Chen Z, Wang X. Climate change adaptation pathways for Australian residential buildings. Build Environ 2011;46:2398–412. doi:10.1016/J.BUILDENV.2011.05.022.
[21] Wan KKW, Li DHW, Lam JC. Assessment of climate change impact on building energy use and mitigation measures in subtropical climates. Energy 2011;36:1404–14. doi:10.1016/J.ENERGY.2011.01.033.
[22] Lam JC, Wan KKW, Yang L. Sensitivity analysis and energy conservation measures implications. Energy Convers Manag 2008;49:3170–7. doi:10.1016/J.ENCONMAN.2008.05.022.
[23] Wan KKW, Li DHW, Pan W, Lam JC. Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications. Appl Energy 2012;97:274–82. doi:10.1016/J.APENERGY.2011.11.048.
[24] Bojic M, Yik F, Leung W. Thermal insulation of cooled spaces in high rise residential buildings in Hong Kong. Energy Convers Manag 2002;43:165–83. doi:10.1016/S0196-8904(01)00018-8.
[25] Bojic M, Yik F, Wan K, Burnett J. Influence of envelope and partition characteristics on the space cooling of high-rise residential buildings in Hong Kong. Build Environ 2002;37:347–55. doi:10.1016/S0360-1323(01)00045-2.
[26] Cheung CK, Fuller RJ, Luther MB. Energy-efficient envelope design for high-rise apartments. Energy Build 2005;37:37–48. doi:10.1016/J.ENBUILD.2004.05.002.
[27] Radhi H. Evaluating the potential impact of global warming on the UAE residential buildings – A contribution to reduce the CO2 emissions. Build Environ 2009;44:2451–62. doi:10.1016/j.buildenv.2009.04.006.
[28] Kneifel J. Beyond the code: Energy, carbon, and cost savings using conventional technologies. Energy Build 2011;43:951–9. doi:10.1016/J.ENBUILD.2010.12.019.
[29] Gaterell MR, McEvoy ME. The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings. Energy Build 2005;37:982–95. doi:10.1016/J.ENBUILD.2004.12.015.
[30] Jentsch MF, Bahaj AS JP. Climate change future proofing of buildings e generation and assessment of building simulation weather files. Energy Build 2008;40:2148–68.
[31] Jenkins DP, Singh H, Eames PC. Interventions for large-scale carbon emission reductions in future UK offices. Energy Build 2009;41:1374–80. doi:10.1016/J.ENBUILD.2009.08.002.
[32] Pulselli RM, Simoncini E, Marchettini N. Energy and emergy based cost–benefit evaluation of building envelopes relative to geographical location and climate. Build Environ 2009;44:920–8. doi:10.1016/J.BUILDENV.2008.06.009.
[33] Silenzi F, Priarone A, Fossa M. Energy demand modeling and forecast of Monoblocco Building at the city hospital of Genova according to different retrofit scenarios. Int J Heat Technol 2017;35:S33–40. doi:10.18280/ijht.35sp0105.
[34] Ouedraogo BI, Levermore GJ, Parkinson JB. Future energy demand for public buildings in the context of climate change for Burkina Faso. Build Environ 2012;49:270–82. doi:10.1016/J.BUILDENV.2011.10.003.
[35] Marszal AJ, Heiselberg P. Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy 2011;36:5600–9. doi:10.1016/j.energy.2011.07.010.
[36] Fong KF, Lee CK. Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong. Appl Energy 2012;93:686–94. doi:10.1016/J.APENERGY.2012.01.006.
[37] Jahangir MH, Ghazvini M, Pourfayaz F, Ahmadi MH, Sharifpur M, Meyer JP. Numerical investigation into mutual effects of soil thermal and isothermal properties on heat and moisture transfer in unsaturated soil applied as thermal storage system. Numer Heat Transf Part A Appl 2018;73:466–81. doi:10.1080/10407782.2018.1449518.
[38] Ahmadi MH, Alhuyi Nazari M, Sadeghzadeh M, Pourfayaz F, Ghazvini M, Ming T, et al. Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Sci Eng 2018:1–36. doi:10.1002/ese3.223.
[39] Al-Zubaidy SN, Tokbolat S, Tokpatayeva R. Passive Design of Buildings for Extreme Weather Environment. Int J Renew Energy Dev 2019;2:1. doi:10.14710/ijred.2.1.1-11.
[40] Agostino DD, Mazzarella L. What is a Nearly zero energy building ? Overview , implementation and comparison of de fi nitions. J Build Eng 2019;21:200–12. doi:10.1016/j.jobe.2018.10.019.
[41] Conti P, Schito E, Testi D. Cost-Benefit Analysis of Hybrid Photovoltaic / Thermal Collectors in a Nearly Zero-Energy Building 2019.
[42] Yang X, Zhang S, Xu W. Impact of zero energy buildings on medium-to-long term building energy consumption in China. Energy Policy 2020;129:574–86. doi:10.1016/j.enpol.2019.02.025.
[43] Adeli MM, Sarhaddi SFF. Increasing thermal comfort of a net ‑ zero energy building inhabitant by optimization of energy consumption. Int J Environ Sci Technol 2019. doi:10.1007/s13762-019-02603-0.
[44] Esbati S, Amooie MA, Sadeghzadeh M, Ahmadi MH, Pourfayaz F, Ming T.  Investigating the effect of using PCM in building materials for energy saving: Case study of Sharif Energy Research Institute . Energy Sci Eng 2019:1–14. doi:10.1002/ese3.328.
[45] Keyvanmajd S, Sajadi B. Toward the design of zero energy buildings ( ZEB ) in Iran : Climatic study. Energy Equip Syst 2019;7:111–9.
[46] IEA. Key World Energy Statistics. 2015.
[47] Iran, Islamic Republic of 2016 n.d.
[48] IEA. CO2 Emissions from Fuel Combustion. 2014.
[49] Pagliarini G, Rainieri S, Vocale P. Energy Efficiency of Existing Buildings: Optimization of Building Cooling, Heating and Power (BCHP) Systems. Energy Environ 2014;25:1423–38. doi:10.1260/0958-305X.25.8.1423.
[50] Madhumathi A, Sundarraja MC. Energy Efficiency in Buildings in Hot Humid Climatic Regions Using Phase Change Materials as Thermal Mass in Building Envelope. Energy Environ 2014;25:1405–21. doi:10.1260/0958-305X.25.8.1405.
[51] Birtles AB. Getting Energy Efficiency Applied in Buildings. Energy Environ 1993;4:221–52. doi:10.1177/0958305X9300400302.
[52] Crilly M, Lemon M, Wright AJ, Cook MB, Shaw D. Retrofitting Homes for Energy Efficiency: An Integrated Approach to Innovation in the Low-Carbon Overhaul of Uk Social Housing. Energy Environ 2012;23:1027–55. doi:10.1260/0958-305X.23.6-7.1027.
[53] Kikuchi R. Views on Methane Hydrate for Zero-Emission Energy. Energy Environ 2002;13:105–13. doi:10.1260/0958305021501100.
[54] Edmonds J, Wise M. Building Backstop Technologies and Policies to Implement the Framework Convention on Climate Change. Energy Environ 1998;9:383–97. doi:10.1177/0958305X9800900404.
[55] Spence A, Poortinga W, Pidgeon N, Lorenzoni I. Public Perceptions of Energy Choices: The Influence of Beliefs about Climate Change and the Environment. Energy Environ 2010;21:385–407. doi:10.1260/0958-305X.21.5.385.
[56] Ahmad K, Rafique AF, Badshah S. Energy Efficient Residential Buildings in Pakistan. Energy Environ 2014;25:991–1002. doi:10.1260/0958-305X.25.5.991.
[57] Ming Y. Energy Development and Urbanization in China. Energy Environ 2015;26:1–14. doi:10.1260/0958-305X.26.1-2.1.
[58] Kamaruzzaman SN, Edwards RE, Zawawi EMA. Energy Consumption of Electricity End Uses in Malaysian Historic Buildings. Energy Environ 2007;18:393–402. doi:10.1260/095830507781076211.
[59] Saeid Kamyabi HM. Climatic Effects on the Formation and Function of Architectures Based on the Climate in Semnan Province, Iran. J Ecol 2006;4.
[60] Iran electricity prices n.d. https://www.globalpetrolprices.com/Iran/electricity_prices/ (accessed December 31, 2019).
[61] Yılmaz E, Arslan H, Bideci A. Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Constr Build Mater 2019;202:806–13. doi:10.1016/J.CONBUILDMAT.2019.01.057.
[62] Al-Waeli AHA, Chaichan MT, Sopian K, Kazem HA, Mahood HB, Khadom AA. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol Energy 2019;177:178–91. doi:10.1016/J.SOLENER.2018.11.016.
[63] Zhang C, Gang W, Wang J, Xu X, Du Q. Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air. Energy 2019;167:1132–43. doi:10.1016/J.ENERGY.2018.11.076.