[1] Haghighi Bardineh Y, Mohamadian F, Ahmadi MH, Akbarianrad N. Medical and dental applications of renewable energy systems. Int J Low-Carbon Technol 2018:1–7. doi:10.1093/ijlct/cty040.
[2] Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low-Carbon Technol 2018:1–6. doi:10.1093/ijlct/cty026.
[3] Dincer I, Hussain MM. Energy and exergy use in the industrial sector 2003;217:481–92.
[4] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: A critical review. Energy Sci Eng 2018:1–22. doi:10.1002/ese3.239.
[5] Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports 2018;4:243–51. doi:10.1016/J.EGYR.2018.03.001.
[6] Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng 2019;0. doi:10.1002/ese3.381.
[7] Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manag 2018;165:113–26. doi:10.1016/J.ENCONMAN.2018.03.040.
[8] Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 2010;14:3059–67. doi:10.1016/J.RSER.2010.07.006.
[9] Crespi F, Gavagnin G, Sánchez D, Martínez GS. Supercritical carbon dioxide cycles for power generation: A review. Appl Energy 2017;195:152–83. doi:10.1016/j.apenergy.2017.02.048.
[10] Hernández-Jiménez F, Soria-Verdugo A, Acosta-Iborra A, Santana D. Exergy recovery from solar heated particles to supercritical CO2. Appl Therm Eng 2019;146:469–81. doi:10.1016/j.applthermaleng.2018.10.009.
[11] Ahmadi MH, Mehrpooya M, Abbasi S, Pourfayaz F, Bruno JC. Thermo-economic analysis and multi-objective optimization of a transcritical CO2 power cycle driven by solar energy and LNG cold recovery. Therm Sci Eng Prog 2017;4:185–96. doi:10.1016/J.TSEP.2017.10.004.
[12] Chen Y, Lundqvist P, Johansson A, Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Appl Therm Eng 2006;26:2142–7. doi:10.1016/J.APPLTHERMALENG.2006.04.009.
[13] Chen Y, Pridasawas W, Lundqvist P. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production. Sol Energy 2010;84:1103–10. doi:10.1016/J.SOLENER.2010.03.006.
[14] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Appl Energy 2009;86:1055–63. doi:10.1016/J.APENERGY.2008.09.018.
[15] Wang J, Sun Z, Dai Y, Ma S. Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network. Appl Energy 2010;87:1317–24. doi:10.1016/J.APENERGY.2009.07.017.
[16] Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 2006;31:1839–54. doi:10.1016/J.RENENE.2005.09.024.
[17] Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide. Energy 2007;32:591–9. doi:10.1016/J.ENERGY.2006.07.016.
[18] Zhang XR, Yamaguchi H, Uneno D. Thermodynamic analysis of the CO2-based Rankine cycle powered by solar energy. Int J Energy Res 2007;31:1414–24. doi:10.1002/er.1304.
[19] Yamaguchi H, Zhang XR, Fujima K, Enomoto M, Sawada N. Solar energy powered Rankine cycle using supercritical CO2. Appl Therm Eng 2006;26:2345–54. doi:10.1016/J.APPLTHERMALENG.2006.02.029.
[20] Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. Study of solar energy powered transcritical cycle using supercritical carbon dioxide. Int J Energy Res 2006;30:1117–29. doi:10.1002/er.1201.
[21] Zhang X-R, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 2007;32:2617–28. doi:10.1016/J.RENENE.2007.01.003.
[22] Niu X-D, Yamaguchi H, Zhang X-R, Iwamoto Y, Hashitani N. Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system. Appl Therm Eng 2011;31:1279–85. doi:10.1016/J.APPLTHERMALENG.2010.12.034.
[23] Lin W, Huang M, He H, Gu A. A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust. J Energy Resour Technol 2009;131:42201–5.
[24] Song Y, Wang J, Dai Y, Zhou E. Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink. Appl Energy 2012;92:194–203. doi:10.1016/J.APENERGY.2011.10.021.
[25] Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 2006;31:1666–79. doi:10.1016/J.ENERGY.2005.05.006.
[26] Liu M, Lior N, Zhang N, Han W. Thermoeconomic analysis of a novel zero-CO2-emission high-efficiency power cycle using LNG coldness. Energy Convers Manag 2009;50:2768–81. doi:10.1016/J.ENCONMAN.2009.06.033.
[27] Dong H, Zhao L, Zhang S, Wang A, Cai J. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle. Energy 2013;63:10–8. doi:10.1016/J.ENERGY.2013.10.063.
[28] Szczygieł I, Stanek W, Szargut J. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity. Energy 2016;105:25–31. doi:10.1016/J.ENERGY.2015.08.112.
[29] Szargut J, Szczygiel I. Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 2009;34:827–37. doi:10.1016/J.ENERGY.2009.02.015.
[30] Ge YT, Li L, Luo X, Tassou SA. Performance evaluation of a low-grade power generation system with CO2transcritical power cycles. Appl Energy 2018;227:220–30. doi:10.1016/j.apenergy.2017.07.086.
[31] Sarmiento C, Cardemil JM, Díaz AJ, Barraza R. Parametrized analysis of a carbon dioxide transcritical Rankine cycle driven by solar energy. Appl Therm Eng 2018;140:580–92. doi:10.1016/j.applthermaleng.2018.04.097.
[32] AlZahrani AA, Dincer I. Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems. Sol Energy 2018;170:557–67. doi:10.1016/j.solener.2018.05.071.
[33] Naseri A, Bidi M, Ahmadi M, Saidur R. Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. J Clean Prod 2017;158:165–81. doi:10.1016/J.JCLEPRO.2017.05.005.
[34] Siddiqui M, Almitani K. Energy Analysis of the S-CO2 Brayton Cycle with Improved Heat Regeneration. Processes 2018;7:3. doi:10.3390/pr7010003.
[35] Ahmadi MH, Sadaghiani MS, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy 2018;20:1–22. doi:10.3390/e20070484.
[36] Bensaci C, Labed A, Universit MZ, Moummi A. Numerical study of natural convection in an inclined enclosure : application to flat plate solar collectors 2017. doi:10.18280/mmep.040101.
[37] Lemmon WE, Huber LM MO. NIST reference fluid thermodynamic and transport properties. 2010. doi:REFPROP.
[38] Sukhatme SP. Solar energy : principles of thermal collection and storage 1997.
[39] Kalogirou SA. Solar Energy Engineering: Processes and Systems. 2009. doi:10.1016/B978-0-12-374501-9.00014-5.
[40] Xia G, Sun Q, Cao X, Wang J, Yu Y, Wang L. Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas). Energy 2014;66:643–53. doi:10.1016/J.ENERGY.2013.12.029.
[41] Kongtragool B, Wongwises S. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renew Energy 2006;31:345–59. doi:10.1016/J.RENENE.2005.03.012.
[42] Mahmoodi mostafa. Analysis and optimization of beta-type Stirling engine taking into account the non-ideal regenerator thermal and hydraulic losses effects. Modares Mech Eng 2011;12.
[43] Possamai DG, Tapia GIM. Thermodynamics analysis of Stirling Engine 2011.
[44] Puech P, Tishkova V. Thermodynamic analysis of a Stirling engine including regenerator dead volume. Renew Energy 2011;36:872–8. doi:10.1016/J.RENENE.2010.07.013.
[45] Thombare DG, Verma SK. Technological development in the Stirling cycle engines. Renew Sustain Energy Rev 2008;12:1–38. doi:10.1016/J.RSER.2006.07.001.
[46] Gulotta TM, Guarino F, Mistretta M, Cellura M, Lorenzini G. Introducing exergy analysis in life cycle assessment: A case study. Math Model Eng Probl 2018;5:139–45. doi:10.18280/mmep.050302.
[47] Karimi M, Ghorbanian K, Gholamrezaei M. Energy and exergy analyses of an integrated gas turbine thermoacoustic engine. Proc Inst Mech Eng Part A J Power Energy 2011;225:389–402. doi:10.1177/0957650911399017.
[48] Dinçer I, Rosen M (Marc A. EXERGY : Energy, Environment and Sustainable Development. Elsevier Science; 2012.
[49] Chen CK, Su YF. Application of exergy method to an irreversible inter-cooled refrigeration cycle. Proc Inst Mech Eng Part A J Power Energy 2005;219:661–8. doi:10.1243/095765005X69242.
[50] (SANA) R energy organization of I. Database for solar irradiation n.d. www.suna.org.ir.
[51] Naseri A, Bidi M, Ahmadi MH. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink. Renew Energy 2017;113:1215–28. doi:10.1016/J.RENENE.2017.06.082.