Document Type : Original Article


1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran.

2 Department of Renewable Energy and Environmental Engineering, University of Tehran, Tehran, Iran.

3 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.


In this paper, a novel CO2 transcritical power cycle which is driven by solar energy integrated by a cryogenic LNG recovery unit is investigated. In the proposed cycle, the condenser unit of the CO2 power cycle is replaced by a Stirling engine. Thermodynamic and exergy analyses are carried out to evaluate the performance of the presented system. Furthermore, in order to investigate the impact of utilization of Stirling engines instead of conventional condenser units, the proposed cycle is compared with the typical CO2 power cycle. The results show that employing the Stirling engine decrease the exergy destruction from 17% in the typical cycle to 8.85%. In addition, the total generated power of the novel system is considerably boosted up about 15 kW in off-peak times and more than 20 kW in the peak time. Moreover, integration of the Stirling engine also decreases LNG mass flow rate. Therefore, the required heat exchanger area in the LNG heater is also lowered.


Main Subjects

[1] Haghighi Bardineh Y, Mohamadian F, Ahmadi MH, Akbarianrad N. Medical and dental applications of renewable energy systems. Int J Low-Carbon Technol 2018:1–7. doi:10.1093/ijlct/cty040.
[2] Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low-Carbon Technol 2018:1–6. doi:10.1093/ijlct/cty026.
[3] Dincer I, Hussain MM. Energy and exergy use in the industrial sector 2003;217:481–92.
[4] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: A critical review. Energy Sci Eng 2018:1–22. doi:10.1002/ese3.239.
[5] Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports 2018;4:243–51. doi:10.1016/J.EGYR.2018.03.001.
[6] Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng 2019;0. doi:10.1002/ese3.381.
[7] Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manag 2018;165:113–26. doi:10.1016/J.ENCONMAN.2018.03.040.
[8] Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 2010;14:3059–67. doi:10.1016/J.RSER.2010.07.006.
[9] Crespi F, Gavagnin G, Sánchez D, Martínez GS. Supercritical carbon dioxide cycles for power generation: A review. Appl Energy 2017;195:152–83. doi:10.1016/j.apenergy.2017.02.048.
[10] Hernández-Jiménez F, Soria-Verdugo A, Acosta-Iborra A, Santana D. Exergy recovery from solar heated particles to supercritical CO2. Appl Therm Eng 2019;146:469–81. doi:10.1016/j.applthermaleng.2018.10.009.
[11] Ahmadi MH, Mehrpooya M, Abbasi S, Pourfayaz F, Bruno JC. Thermo-economic analysis and multi-objective optimization of a transcritical CO2 power cycle driven by solar energy and LNG cold recovery. Therm Sci Eng Prog 2017;4:185–96. doi:10.1016/J.TSEP.2017.10.004.
[12] Chen Y, Lundqvist P, Johansson A, Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Appl Therm Eng 2006;26:2142–7. doi:10.1016/J.APPLTHERMALENG.2006.04.009.
[13] Chen Y, Pridasawas W, Lundqvist P. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production. Sol Energy 2010;84:1103–10. doi:10.1016/J.SOLENER.2010.03.006.
[14] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Appl Energy 2009;86:1055–63. doi:10.1016/J.APENERGY.2008.09.018.
[15] Wang J, Sun Z, Dai Y, Ma S. Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network. Appl Energy 2010;87:1317–24. doi:10.1016/J.APENERGY.2009.07.017.
[16] Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 2006;31:1839–54. doi:10.1016/J.RENENE.2005.09.024.
[17] Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide. Energy 2007;32:591–9. doi:10.1016/J.ENERGY.2006.07.016.
[18] Zhang XR, Yamaguchi H, Uneno D. Thermodynamic analysis of the CO2-based Rankine cycle powered by solar energy. Int J Energy Res 2007;31:1414–24. doi:10.1002/er.1304.
[19] Yamaguchi H, Zhang XR, Fujima K, Enomoto M, Sawada N. Solar energy powered Rankine cycle using supercritical CO2. Appl Therm Eng 2006;26:2345–54. doi:10.1016/J.APPLTHERMALENG.2006.02.029.
[20] Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. Study of solar energy powered transcritical cycle using supercritical carbon dioxide. Int J Energy Res 2006;30:1117–29. doi:10.1002/er.1201.
[21] Zhang X-R, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 2007;32:2617–28. doi:10.1016/J.RENENE.2007.01.003.
[22] Niu X-D, Yamaguchi H, Zhang X-R, Iwamoto Y, Hashitani N. Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system. Appl Therm Eng 2011;31:1279–85. doi:10.1016/J.APPLTHERMALENG.2010.12.034.
[23] Lin W, Huang M, He H, Gu A. A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust. J Energy Resour Technol 2009;131:42201–5.
[24] Song Y, Wang J, Dai Y, Zhou E. Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink. Appl Energy 2012;92:194–203. doi:10.1016/J.APENERGY.2011.10.021.
[25] Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 2006;31:1666–79. doi:10.1016/J.ENERGY.2005.05.006.
[26] Liu M, Lior N, Zhang N, Han W. Thermoeconomic analysis of a novel zero-CO2-emission high-efficiency power cycle using LNG coldness. Energy Convers Manag 2009;50:2768–81. doi:10.1016/J.ENCONMAN.2009.06.033.
[27] Dong H, Zhao L, Zhang S, Wang A, Cai J. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle. Energy 2013;63:10–8. doi:10.1016/J.ENERGY.2013.10.063.
[28] Szczygieł I, Stanek W, Szargut J. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity. Energy 2016;105:25–31. doi:10.1016/J.ENERGY.2015.08.112.
[29] Szargut J, Szczygiel I. Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 2009;34:827–37. doi:10.1016/J.ENERGY.2009.02.015.
[30] Ge YT, Li L, Luo X, Tassou SA. Performance evaluation of a low-grade power generation system with CO2transcritical power cycles. Appl Energy 2018;227:220–30. doi:10.1016/j.apenergy.2017.07.086.
[31] Sarmiento C, Cardemil JM, Díaz AJ, Barraza R. Parametrized analysis of a carbon dioxide transcritical Rankine cycle driven by solar energy. Appl Therm Eng 2018;140:580–92. doi:10.1016/j.applthermaleng.2018.04.097.
[32] AlZahrani AA, Dincer I. Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems. Sol Energy 2018;170:557–67. doi:10.1016/j.solener.2018.05.071.
[33] Naseri A, Bidi M, Ahmadi M, Saidur R. Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. J Clean Prod 2017;158:165–81. doi:10.1016/J.JCLEPRO.2017.05.005.
[34] Siddiqui M, Almitani K. Energy Analysis of the S-CO2 Brayton Cycle with Improved Heat Regeneration. Processes 2018;7:3. doi:10.3390/pr7010003.
[35] Ahmadi MH, Sadaghiani MS, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy 2018;20:1–22. doi:10.3390/e20070484.
[36] Bensaci C, Labed A, Universit MZ, Moummi A. Numerical study of natural convection in an inclined enclosure : application to flat plate solar collectors 2017. doi:10.18280/mmep.040101.
[37] Lemmon WE, Huber LM MO. NIST reference fluid thermodynamic and transport properties. 2010. doi:REFPROP.
[38] Sukhatme SP. Solar energy : principles of thermal collection and storage 1997.
[39] Kalogirou SA. Solar Energy Engineering: Processes and Systems. 2009. doi:10.1016/B978-0-12-374501-9.00014-5.
[40] Xia G, Sun Q, Cao X, Wang J, Yu Y, Wang L. Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas). Energy 2014;66:643–53. doi:10.1016/J.ENERGY.2013.12.029.
[41] Kongtragool B, Wongwises S. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renew Energy 2006;31:345–59. doi:10.1016/J.RENENE.2005.03.012.
[42] Mahmoodi  mostafa. Analysis and optimization of beta-type Stirling engine taking into account the non-ideal regenerator thermal and hydraulic losses effects. Modares Mech Eng 2011;12.
[43] Possamai DG, Tapia GIM. Thermodynamics analysis of Stirling Engine 2011.
[44] Puech P, Tishkova V. Thermodynamic analysis of a Stirling engine including regenerator dead volume. Renew Energy 2011;36:872–8. doi:10.1016/J.RENENE.2010.07.013.
[45] Thombare DG, Verma SK. Technological development in the Stirling cycle engines. Renew Sustain Energy Rev 2008;12:1–38. doi:10.1016/J.RSER.2006.07.001.
[46] Gulotta TM, Guarino F, Mistretta M, Cellura M, Lorenzini G. Introducing exergy analysis in life cycle assessment: A case study. Math Model Eng Probl 2018;5:139–45. doi:10.18280/mmep.050302.
[47] Karimi M, Ghorbanian K, Gholamrezaei M. Energy and exergy analyses of an integrated gas turbine thermoacoustic engine. Proc Inst Mech Eng Part A J Power Energy 2011;225:389–402. doi:10.1177/0957650911399017.
[48] Dinçer I, Rosen M (Marc A. EXERGY : Energy, Environment and Sustainable Development. Elsevier Science; 2012.
[49] Chen CK, Su YF. Application of exergy method to an irreversible inter-cooled refrigeration cycle. Proc Inst Mech Eng Part A J Power Energy 2005;219:661–8. doi:10.1243/095765005X69242.
[50] (SANA) R energy organization of I. Database for solar irradiation n.d.
[51] Naseri A, Bidi M, Ahmadi MH. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink. Renew Energy 2017;113:1215–28. doi:10.1016/J.RENENE.2017.06.082.