[1] B. Gharbani, M. Mehrpooya, M. Sadeghzadeh. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management 165 (2018) 113–126114.
[4] M. H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. A. Nazari, M. Ghalandari. Utilization of hybrid nanofluids in solar energy applications: A review. Nano-Structures & Nano-Objects 20 (2019) 100386.
[5] M. Mehrpooya, B. Ghorbani, M. Sadeghzadeh. Hybrid solar parabolic dish power plant and high‐temperature phase change material energy storage system. Int J Energy Res. 2019; 1–16. https://doi.org/10.1002/ er.4637.
[6] G. Lavinia, M. Antoine, R. Pierre, F. Michel, M. H. Ahmadi, M. Sadeghzadeh. Steady state operation exergy based optimization for solar thermal collectors. AiCHe Journal. 2020.
https://doi.org/10.1002/ep.13359.
[7] S. Y. Kee, Y. Munusamy, K. S. Ong. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 131, 2018, 455–471.
[8] H. H. Al-Kayiem, M. A. Aurybi, S. I. U. Gilani, A. A. Ismaeel, S. T. Mohammad. Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy, 166, 2019, 490-505.
[9] M. A. Hasan, K. Sumathy. Photovoltaic thermal module concepts and their performance analysis: a review. Renewable and Sustainable Energy Reviews, 2010, 14, 1845–59.
[10] P. Xu, X. Zhang, J. Shen, X. Zhao, W. He, D. Li. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system. Energy Reports, 2015, 1, 30–35.
[11] S. M. Sultan, C. P. Tso, and E. Efzan. Comments on “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India”. Solar Energy Materials and Solar Cells, 2019, 198, 63-64.
[12] S. M. Sultan, C. P. Tso, and E. Efzan. A proposed temperature-dependent photovoltaic efficiency difference factor for evaluating photovoltaic module cooling techniques in natural or forced fluid circulation mode. Arab J. Sci. Eng., 2019, 44, 8123,
https://doi.org/10.1007/s13369-019-03932-5.
[13] S. M. Sultan, C. P. Tso, and E. Efzan. A thermal performance study for different glazed water based photovoltaic thermal collectors. In: AIP Conference Proceedings, 2018, pp. 020307.
[14] S. M. Sultan, C. P. Tso, and E. Efzan. The effect of mass flow rate and solar radiation on the photovoltaic efficiency of a glazed water based PVT. In: AIP Conference Proceedings, 2018, 1, pp-020309.
[15] S. M. Sultan, C. P. Tso, and E. Efzan. A new production cost effectiveness factor for assessing photovoltaic module cooling techniques. Int J Energy Res, 2019, pp. 1–10.
https://doi.org/10.1002/er.4889.
[16] M. I. Fadhel, S. M. Sultan, and S. A. Alkaff. Theoretical study of new configuration of photovoltaic/thermal solar collector (PVT) design. Advanced Materials Research, Trans Tech Publications, Switzerland, 2013, 772, pp. 681-687.
[17] R. Nasrin, M. Hasanuzzaman, N.A. Rahim. Effect of high irradiation and cooling on power, energy and performance of a PVT system. Renewable Energy, 2018, 116, 552-569.
[18] H. Fayaz, R. Nasrin, N.A. Rahim, M. Hasanuzzaman. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 2018, 169, 217–230.
[19] A. Nahar, M. Hasanuzzaman, N. A. Rahim. Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 2017, 144, 517–528.
[20] E. Sakellariou, P. Axaopoulos. Simulation and experimental performance analysis of a modified PV panel to a PVT collector. Solar Energy, 2017, 155, 715–726.
[21] M. M. Rahman, M. Hasanuzzaman, N. A. Rahim. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. Journal of Cleaner Production, 2017, 143, 912-924.
[22] A. Khelifa, K. Touafek, H. Ben Moussa, I. Tabet. Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Solar Energy, 2016, 135, 169–176.
[23] N. Aste, C. D. Pero, F. Leonforte, M. Manfren. Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector. Solar Energy, 2016, 135, 551–568.
[24] G. N. Tiwari, O. Fischer, R. K. Mishra, I. M. Al-Helal. Performance evaluation of N-photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: An experimental study. Solar Energy, 2016, 134, 302–313.
[25] N. Aste, F. Leonforte, C. D. Pero. Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 2015, 112, 85–99.
[26] A. N. Al-Shamani, S. Mat, M. H. Ruslan, A. M. Abed, and K. Sopian. Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach. International Journal of Environment and Sustainability, 2016, 5, 54-60.
[27] J. I. Bilbao, A. B. Sproul. Detailed PVT-water model for transient analysis using RC networks. Solar Energy, 2015, 115, 680–693.
[28] A. N. Al-Shamani,
S. Mat,
M. H. Ruslan, A. M. Abed,
K. Sopian. Numerical study on the characteristics of a specially designed rectangular tube absorber photovoltaic thermal collector (PVT). WSEAS Transactions on Environment and Development, 2016, 11, 23-28.
[29] A. Fudholi, K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, H. A. Kazem. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 2014, 78, 641–651.
[30] A. Hazi, G. Hazi, R. Grigore, S. Vernica. Opportunity to use PVT systems for water heating in industry. Applied Thermal Engineering, 2014, 63, 151-157.
[31] F. Shan, L. Cao, G. Fang. Dynamic performances modeling of a photovoltaic–thermal collector with water heating in buildings. Energy and Buildings, 2013, 66, 485–494.
[32] A. Nahar, M. Hasanuzzaman, N. A. Rahim b, S. Parvin. Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renewable Energy, 2019, 132, 284-95.
[33] M. I. Fadhel, Sakhr M. Sultan, Saqaff A. Theoretical study of new configuration of PVT system design. Journal of Advanced Material research, 2013, 681-87.
[34] S. M. Sultan, M. I. Fadhel, Saqaff A. Performance analysis of the photovoltaic/thermal solar collector for different Malaysian conditions. Journal of Applied Mechanics and Materials, 2014, 522-27.
[35] S. M. Sultan, M. N. Ervina Efzan, Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 2018, 173, 939–954.
[36] Y. A. Cengel, A. Ghajar. Heat and Mass Transfer Fundamentals and Applications. Mc Graw Hill, 2011.
[37] L. W. Florschuetz. Extension of the Hottel-Whillier model to the analysis of the combined photovoltaic thermal flat plate collectors. Solar Energy, 2001, 22, 227-41.
[38] G. N. Tiwari, Arvind Tiwari, Shyam. Handbook of Solar Energy Theory, Analysis and Applications. Springer, 2016, ISSN 2199-8582.
[39] S. Dubey, G. N. Tiwari. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy, 2008, 82, 602–612.