[1] Oktay, Z. (2009). Investigation of coal-fired power plants in Turkey and a case study: Can plant. Appl. Therm. Eng. 29:550–557.
[2] Yerel, S. & Ersen, T. (2013). Prediction of the calorific value of coal deposit using linear regression analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(10), 976-980.
[3] Assad, M.E.H., Said, Z., Khosravi, A., Salameh, T., & Albawab, M. (2019, March). Parametric study of geothermal parallel flow double-effect water-LiBr absorption chiller. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.
[4] Assad, M.E.H., Khosravi, A., Said, Z., Albawab, M., & Salameh, T. (2019, March). Thermodynamic analysis of geothermal series flow double-efffect water/LiBr absorption chiller. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.
[5] Ehyaei, M.A., Ahmadi, A., Assad, M.E.H., & Rosen, M.A. (2020). Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. Journal of Cleaner Production, 258, 120780.
[6] Assad, M.E.H., Bani-Hani, E., & Khalil, M. (2017). Performance of geothermal power plants (single, dual, and binary) to compensate for LHC-CERN power consumption: comparative study. Geothermal Energy, 5(1), 1-16.
[7] Kandemir, S.Y. (2016). Assessment of coal deposit using multivariate statistical analysis techniques. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(7), 1002-1006.
[8] Bektaş, V., Çerçevik, A.E., & Kandemir, S. Y. (2017). Importance of Thermal Insulation in Buildings and Effect of Thermal Insulation Material Thickness on Insulation. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 4(1), 36-42.
[9] Takan, M.A., & Kandemir, S.Y. (2020), Evaluation of Geothermal Energy in Turkey in terms of Primary Energy Supply. European Journal of Science and Technology, 381-385.
[10] Ahmadi M.H., Mehrpooya M., and Pourfayaz F. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Appl Therm Eng 2016;109:640–52. doi:10.1016/J.APPLTHERMALENG.2016.08.141.
[11] Ahmadi, M.H., Mohammadi, A., Pourfayaz, F. et al. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. J Nat Gas Sci Eng 2016;34:428–38. doi:10.1016/J.JNGSE.2016.07.014.
[12] Ahmadi, M.H., Mehrpooya, M., and Pourfayaz, F. Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Energy Convers Manag 2016;119:422–34. doi:10.1016/J.ENCONMAN.2016.04.062.
[13] Naseri, A., Bidi, M., Ahmadi, M.H. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink. Renew. Energy 2017;113:1215–28. doi:10.1016/J.RENENE.2017.06.082.
[14] Mirzaee, M., Ahmadi, M.H., Acıkkalp, E., & Rahimzadeh, M. (2019). Sensitivity analysis of technical and economic parameters for natural gas management in enhanced oil recovery projects. International Journal of Low-Carbon Technologies, 14(1), 1-9.
[15] Kandemir, S.Y., Bektaş, V., & Açikkalp, E. (2019). Determination of optimum insulation thicknesses and economic analysis for different wall models in external wall insulation applications. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(1), 275-288.
[16] Dincer, I., Environmental issues. II. Potential solutions Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 23 (1) (2001), pp. 83-92
[17] Bilgen, S., Kaygusuz, K., Sari, A. Renewable energy for a clean and sustainable future Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 26 (12) (2004), pp. 1119-1129
[18] Panwar, N.L., Kaushik, S.C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
[19] Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A. et al. Solar power technology for electricity generation: A critical review. Energy Sci Eng 2018:1–22. doi:10.1002/ese3.239.
[20] Sadeghzadeh, M., Ahmadi, M.H., Kahani, M., Sakhaeinia, H., Chaji, H., Chen, L. (2019). Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng doi:10.1002/ese3.381.
[21] Ghorbani, B., Mehrpooya, M., Sadeghzadeh, M. (2018). Developing a tri-generation system of power, heating, and freshwater (for an industrial town) using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manag 2018;165:113–26. doi:10.1016/J.ENCONMAN.2018.03.040.
[22] Naseri, A., Fazlikhani, M., Sadeghzadeh, M., Naeimi, A., Bidi, M., & Tabatabaei, S.H. (2020). Thermodynamic and exergy analyses of a novel solar-powered CO2 transcritical power cycle with recovery of cryogenic LNG using stirling engines. Renewable Energy Research and Application, 1(2), 175-185.
[23] Z. Utlu and A. Hepbasli, “A review on analyzing and evaluating the energy utilization efficiency of countries,” Renew. Sustain. Energy Rev., Vol. 11, No. 1, pp. 1–29, 2007, doi: 10.1016/j.rser.2004.12.005.
[24] M.A. Rosen and R. Tang, “Improving steam power plant efficiency through exergy analysis: effects of altering excess combustion air and stack-gas temperature,” Int. J. Exergy, Vol. 5, No. 1, p. 31, 2008, doi: 10.1504/IJEX.2008.016011.
[25] R. Kumar et al., “A review status on alternative arrangements of power generation energy resources and reserve in India,” Int. J. Low-Carbon Technol., pp. 1–17, 2019, doi: 10.1093/ijlct/ctz066.
[26] Kumar, A.K.B.A., Nikam, K.C., & Behura, A.K. (2020). An exergy analysis of a 250 MW thermal power plant. Renewable Energy Research and Application, 1(2), 197-204.
[27] Chou, S.K., Chua, K.J., Ho, J.C., Ooi, C.L. On the study of an energy-efficient greenhousefor heating, cooling and dehumidification applications. Appl Energy2004;77:355–73
[28] Hepbasli, A. (2011). A comparative investigation of various greenhouse heating options using exergy analysis method. Applied Energy, 88(12), 4411-4423.
[29] Ershad A.M. (2017). Institutional and Policy Assessment of Renewable Energy Sector in Afghanistan 15 Mart 2019. http://downloads.hindawi.com/journals/ jre/2017/5723152.pdf
[30] Shirzad, A.M. & Tarhan, İ. (2019). Theoretical Potentials and Utilization Capacities of Afghanistan’s Renewable Energy Resource. Çanakkale Onsekiz Mart University Fen Bilimleri Enstitüsü Dergisi, 5(1), 157-186.
[31] Raheleh, R., Meysam, K.S., Hasanuddin, L., Dalia, S., Abbas, M. An overview of Afghanistan’s trends toward renewable and sustainable energies. Renew Sustain Energy Rev 2017;76:1440e64.
[33] Kahvecioğlu, H. (2005), Greenhouse heating systems and improve their designs”, Master Thesis, Yıldız Teknik University.
[34] Tokgöz, B. (2006). The usage of the renewable energy sources and their application for greenhouse heating. Master Thesis, Yıldız Teknik University.
[35] Lucia, U., Fino, D., Grisolia, G. (2020) Thermoeconomic analysis of Earth system in relation to sustainability: a thermodynamic analysis of weather changes due to anthropic activities. Journal of Thermal Analysis and Calorimetry, in press.
[36] Grisolia, G., Fino, D., Lucia, U. (2020) Thermodynamic optimisation of the biofuel production based on mutualism. Energy Reports 6, 1561-1571
[37] Lucia, U., Grisolia, G. (2019) Exergy inefficiency: An indicator for sustainable development analysis. Energy Reports, 5, 62-69,
[38] Lucia, U., Grisolia, G. (2018) Cyanobacteria and Microalgae: Thermoeconomic Considerations in Biofuel Production. Energies, 11, 156-171,
[39] Lucia, U., Grisolia, G. (2017) Unavailability percentage as energy planning and economic choice parameter. Renewable & Sustainable Energy Reviews, 75, 197-204.