[1] S. A. Kalogirou and Y. Tripanagnostopoulos. Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion and Management, vol. 47, no. 18, pp. 3368-3382, 2006, doi: https://doi.org/10.1016/j.enconman.2006.01.012.
[2] P. R. Jagadale, A. B. Choudhari, and S. S. Jadhav. Design and simulation of grid connected solar Si-Poly photovoltaic plant using PVsyst for Pune, India location. Renewable Energy Research and Applications, vol. 3, no.1, pp. 41-49, 2022,
doi: 10.22044/rera.2021.11057.1069.
[3] T. Kjeldstad, D. Lindholm, E. Marstein, and J. Selj. Cooling of floating photovoltaics and the importance of water temperature. Solar Energy, vol. 218, pp. 544-551, 2021, doi:https://doi.org/10.1016/j.solener.2021.03.022.
[4] A. P. Sukarso and K. N. Kim. Cooling effect on the floating solar PV: performance and economic analysis on the case of West Java province in Indonesia. Energies, vol. 13, no. 9, 2020, doi: 10.3390/en13092126.
[5] M. Dörenkämper, A. Wahed, A. Kumar, M. de Jong, J. Kroon, and T. Reindl. The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, vol. 214, pp. 239-247, 2021, doi:
https://doi.org/10.1016/j.solener.2020.11.029.
[6] Y.-G. Lee, H.-J. Joo, and S.-J. Yoon. Design and installation of floating type photovoltaic energy generation system using FRP members. Solar Energy, vol. 108, pp. 13-27, 2014.
[7] E. M. do Sacramento, P. C. Carvalho, J. C. de Araújo, D. B. Riffel, R. M. da Cruz Corrêa, and J. S. P. Neto. Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. IET Renewable Power Generation 9, vol. 9, no. 8, pp. 1019-1024, 2015.
[8] M. S. M. Azmi, M. Y. H. Othman, M. H. H. Ruslan, K. Sopian, and Z. A. A. Majid. Study on electrical power output of floating photovoltaic and conventional photovoltaic. AIP Conference Proceedings, vol. 1571, no. 1, pp. 95-101, 2013, doi: 10.1063/1.4858636.
[9] N. A. S. Elminshawy, A. Osama, D. G. El-Damhogi, E. Oterkus, and A. M. I. Mohamed. Simulation and experimental performance analysis of partially floating PV system in windy conditions. Solar Energy, vol. 230, pp. 1106-1121, 2021/12/01/ 2021, doi:
https://doi.org/10.1016/j.solener.2021.11.020.
[10] S. Gadzanku, L. Beshilas, and U. B. Grunwald. Enabling floating solar photovoltaic (FPV) deployment review of barriers to FPV deployment in Southeast Asia. National Renewable Energy Laboratory (NREL), 2021.
[11] M. Lak Kamari, H. Isvand, and M. Alhuyi Nazari. Applications of multi-criteria decision-making (MCDM) methods in renewable energy development: a review (in EN). Renewable Energy Research and Applications, vol. 1, no. 1, pp. 47-54, 2020, doi: 10.22044/rera.2020.8541.1006.
[13] Y. Wu, L. Li, Z. Song, and X. Lin. Risk assessment on offshore photovoltaic power generation projects in China based on a fuzzy analysis framework. Journal of cleaner production, vol. 215, pp. 46-62, 2019.
[14] X. Wang et al., Synthesis, structural characterization and evaluation of floating BN codoped TiO2/expanded perlite composites with enhanced visible light photoactivity. Applied Surface Science, vol. 349, pp. 264-271, 2015.
[15] P. Ranjbaran, H. Yousefi, G. Gharehpetian, and F. R. Astaraei. A review on floating photovoltaic (FPV) power generation units. Renewable and Sustainable Energy Reviews, vol. 110, pp. 332-347, 2019.
[16] M. Barbuscia. Economic viability assessment of floating photovoltaic energy, 2018.
[17] A. Siddiqi and L. D. Anadon. The water–energy nexus in Middle East and North Africa. Energy policy, vol. 39, no. 8, pp. 4529-4540, 2011.
[18] A. K. Singh, D. Boruah, L. Sehgal, and A. P. Ramaswamy. Feasibility study of a grid-tied 2MW floating solar PV power station and e-transportation facility using ‘SketchUp Pro’for the proposed smart city of Pondicherry in India. Journal of Smart Cities, vol. 2, no. 2, pp. 49-59, 2017.
[19] M. Rosa-Clot, G. M. Tina, and S. Nizetic. Floating photovoltaic plants and wastewater basins: an Australian project. Energy Procedia, vol. 134, pp. 664-674, 2017.
[20] L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, and R. Wennersten.Evaluating the benefits of integrating floating photovoltaic and pumped storage power system. Energy Conversion Management, vol. 194, pp. 173-185, 2019.
[21] M. Fereshtehpour, R. Javidi Sabbaghian, A. Farrokhi, E. B. Jovein, and E. Ebrahimi Sarindizaj. Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renewable Energy, vol. 171, pp. 1171-1187, 2021, doi:
https://doi.org/10.1016/j.renene.2020.12.005.
[22] P. Hellegers, W. Immerzeel, and P. Droogers. Economic concepts to address future water supply–demand imbalances in Iran, Morocco and Saudi Arabia. Journal of hydrology, vol. 502, pp. 62-67, 2013.
[23] D. Martínez-Granados, J. F. Maestre-Valero, J. Calatrava, and V. Martínez-Alvarez. The economic impact of water evaporation losses from water reservoirs in the Segura basin, SE Spain. Water Resources Management, vol. 25, no. 13, p. 3153, 2011.
[24] F. Helfer, C. Lemckert, and H. Zhang. Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of hydrology, vol. 475, pp. 365-378, 2012.
[25] M. A. Benzaghta and T. A. Mohamad. Evaporation from reservoir and reduction methods: An overview and assessment study. International Engineering Convention, Domascus, Syria and Medinah, Kingdom of Saudi Arabia, 2009.
[26] F. Gökbulak and S. Özhan. Water loss through evaporation from water surfaces of lakes and reservoirs in Turkey. Official Publication of the European Water Association, EWA, 2006.
[27] S. Azami, M. Vahdaty, and F. Torabi. Theoretical analysis of reservoir-based floating photovoltaic plant for 15-khordad dam in Delijan. Energy Equipment and Systems, vol. 5, no. 2, pp. 211-218, 2017.
[28] M. R. Santafé, J. B. T. Soler, F. J. S. Romero, P. S. F. Gisbert, J. J. F. Gozálvez, and C. M. F. Gisbert. Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, vol. 67, pp. 246-255, 2014.
[29] D. Mittal, B. K. Saxena, and K. Rao. Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan. 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2017: IEEE, pp. 1-7.
[30] S.-M. Kim, M. Oh, and H.-D. Park. Analysis and prioritization of the floating photovoltaic system potential for reservoirs in Korea. Applied Sciences, vol. 9, no. 3, p. 395, 2019.
[31] A. Tavana et al. Toward renewable and sustainable energies perspective in Iran. Renewable energy, vol. 139, pp. 1194-1216, 2019.
[32] P. S. Mohsen, F. Pourfayaz, R. Shirmohamadi, S. Moosavi, and N. Khalilpoor. Potential, current status, and applications of renewable energy in energy sector of Iran: a review (in en). Renewable Energy Research and Applications, vol. 2, no. 1, pp. 25-49, 2021, doi: 10.22044/rera.2020.8841.1008.
[33] Z. Molamohamadi and M. R. Talaei. Analysis of a Proper Strategy for Solar Energy Deployment in Iran using SWOT Matrix (in en). Renewable Energy Research and Applications, vol. 3, no. 1, pp. 71-78, 2022, doi: 10.22044/rera.2021.11011.1066.
[34] M. Mirzaei Omrani, M. Zandi, S. Pierfederici, and M. Mirzaei Omrani. Investigation of an appropriate location for construction the large-scale photovoltaic power plant in Southeastern Iran. 2019 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), pp. 1-6, 2019, doi: 10.1109/ICREDG47187.2019.194155.
[35] RETScreen software, NASA Meteorology database.
[36] E. Ebrahim-zadeh. Hamoon Lake and its role in socio-ecological issues of Sistan. Water and Environment Quarterly, vol. 12, p. 13, 1379.
[37] B. S. Kumar and K. Sudhakar. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, vol. 1, pp. 184-192, 2015.
[38] M. Chandrashekara and A. Yadav. Water desalination system using solar heat: a review. Renewable and Sustainable Energy Reviews, vol. 67, pp. 1308-1330, 2017.
[39] K. Sudhakar and T. Srivastava. Energy and exergy analysis of 36W solar photovoltaic module. International Journal of Ambient Energy, vol. 35, no. 1, pp. 51-57, 2014.
[40] M. Mirzaei Omrani, R. Shahabi-Nezhad, M. Zandi, and R. Gavagsaz-ghoachani. Feasibility study of photovoltaic solar power plants construction in the Southeastern Iran: Technical and economic parameters (Persian language). 2nd International Conference on researches in Science and Engineering, Istanbul, Turkey, 2017.
[41] N. Martín-Chivelet. Photovoltaic potential and land-use estimation methodology. Energy, vol. 94, pp. 233-242, 2016.
[42] K. Madani, A. AghaKouchak, and A. Mirchi. Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iranian Studies, vol. 49, no. 6, pp. 997-1016, 2016.
[43] E. Spang, W. Moomaw, K. Gallagher, P. Kirshen, and D. Marks. The water consumption of energy production: an international comparison. Environmental Research Letters, vol. 9, no. 10, p. 105002, 2014.
[44] U. Caldera, D. Bogdanov, and C. Breyer. Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate. Desalination, vol. 385, pp. 207-216, 2016.
[45] 2000 tomans per 1litre mineral water, 2018, Available: https://www.isna.ir/news/97052211498