Document Type : Original Article

Authors

1 Modibbo Adama University, Yola, Adamawa State, Nigeria.

2 Department of Physics, Faculty of Physical Sciences, Modibbo Adama University, Yola, Adamawa State, Nigeria.

3 Department of Mathematics, Faculty of Physical Sciences, Modibbo Adama University, Yola, Adamawa State, Nigeria.

4 Department of Physics, Aminu Saleh College of Education Azare, Bauchi State, Nigeria.

Abstract

Dye-Sensitized solar cells (DSSCs) are among the family of third generation photovoltaic (PV). DSSCs are promising with the theoretical predicted value for power conversion efficiency (PCE) of 20%. In this paper, explicit equations for the single-diode equivalent circuit model parameters of a solar cell were modeled based on the characteristic points on the I-V curves that do not require the short-circuit and open-circuit slopes as input data. The equations were used to calculate the five model parameters (n, Rs, Rsh, Iph, Io) of a standard solar cell-based DSSCs composed of different natural photosensitizers. The results show that four(~28.5%) devices with natural photosensitizers (bitter gourd, sun flower, rose flower, tomato) manifest parameter irregularities i.e. they have negative series resistance or complex shunt resistance. Despite the occurrence of irregular parameters, there is still a good match between the calculated and measured photoelectric characteristics. This supports the idea that the nature of the parameter values does not matter provided there is a good match between measured and calculated I-V characteristics. The bitter gourd-based DSSC demonstrates the most promising photosensitizer for DSSC fabrication based on values of the parameters. Hence, the agreement of the calculated and measured parmeters suggests that modeling is good approach for extraction solar parameters.

Keywords

[1] S.C. Ezike, A.B. Alabi, A.N. Ossai, and A.O. Aina, “Effect of tertiary butylpyridine in stability of methylammonium lead iodide perovskite thin films”, Bull. Mater. Sci. Vol. 43, pp. 40, 2020, https://doi.org/10.1007/s12034-019-2002-2.
 
 
 
[4] A.N. Ossai, A.B. Alabi, S.C. Ezike, and A.O. Aina, “Zinc oxide-based dye-sensitized solar cells using natural and synthetic sensitizers”, CRGSC, Vol. 3, pp.100043, 2021, https://doi.org/10.1016/j.crgsc.2020.100043.
 
[5] A.N. Ossai, S.C. Ezike, and A.B. Dikko, “Bio-synthesis of zinc oxide nanoparticles from bitter leaf (vernonia amygdalina) extract for dye-sensitized solar cell fabrication”, J. Mater. Environ. Sci. 11, pp. 444-451, 2020.
 
[6] A.R. Jordehi, “Parameter estimation of solar photovoltaic (PV) cells: A review”, Renwe. Sustain. Energy rev. Vol. 61, pp.354-371, 2016, https://doi.org/10.1016/j.rser.2016.03.049.
 
[7] W. De Soto, S. Klein, and W. Beckman, “Improvement and validation of a model for photovoltaic array performance”, Sol. Energy Vol. 80, pp. 78-88, 2006, https://doi.org/10.1016/j.solener.2005.06.010.
 
[8] A. Laudani, F. Riganti-Fulgenei, and A. Salvini, “Identification of the one-diode model for photovoltaic modules from datasheet values”, Solr energy, Vol. 108 pp. 432-446, 2014, https://doi.org/10.1016/j.solener.2014.07.024.
 
[9] A. Luadani, F. Mancill-David, F. Riganti-Fulgenei, and A. Salvini, “Reduced form of the photovoltaic five-parameter model for efficient computation of parameters”, Sol. Enrgy Vol. 97, pp. 122-127, 2013, http://dx.doi.org/10.1016/j.solener.2013.07.031.
 
[10] A.H. ALQahtani, “A simplified and accurate photovoltaic module parameters extraction approach using matlab”, In proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28-30, 2012, pp. 1748-1753, https://doi.org/10.1109/ISIE.2012.6237355.
 
[11] S. Lineykin, M. Averbukh, Kuperman, “An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel”, Renew. Sustain. Energy Rev., Vol. 30, pp. 282-289, 2014, https://doi.org/10.1016/j.rser.2013.10.015.
 
[12] M. Villalva, J. Gazoli, and E. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays”, IEEE Trans. Power Electron. Vol. 24, pp. 1198-1208, 2009, https://doi.org/10.1109/TPEL.2009.2013862.
 
[13] R. Chenni, M. Makhlouf, T. Kerbache, and A. Bouzid, “A detailed modeling method for photovoltaic cells”, Energy, Vol. 32, pp. 1724-1730, 2007, https://doi.org/10.1016/j.energy.2006.12.006.
 
[14] C. Carrero, D. Ramfrez, J. Rodriguez, and C. Platero, “Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the curve”, Renew. Energy, Vol. 36, pp. 2972-2977, 2011, https://doi.org/10.1016/j.renene.2011.04.001.
 
[15] Y.A. Mahmoud, W. Xiao, and H.H. Zeineldin, “A parameterization approach for enhancing PV model accuracy”, IEEE. Trans. Ind. Electron Vol. 60, pp. 5708-5716, 2013, https://doi.org/10.1109/TIE.2012.2230606.
 
[16] S. Cannizaro, M.C. Di Piazza, M. Luna, and G. Vitale, “Generalized classification of PV modules by simplified single-diode models”, In proceedings of the 2014 IEEE 23rd int. Symposium on industrial Electronics (ISIE), Istanbul, Turkey, 1-4 June pp. 2266-2273, 2014, https://doi.org/10.1109/ISIE.2014.6864971.
 
[17] J. Accarino, G. Petrone, C.A. Ramos-paja, and G. Spagnuola, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model”, In proceedings of the 2013 int. conference on clean electrical power (ICCEP), Alghero, Italy, 11-13 June (2013) 62-66, https://doi.org/10.1109/ICCEP.2013.6586967.
 
[18] I. Nassar-eddine, A. Obbadi, Y. Errami, A. El fajri, and M. Agunaou, “Parameter estimation of photovoltaic modules using iterativemethod and the Lambert W function: a comparative study”, Energy convers. Manag., Vol. 119, pp. 37-48, 2016, https://doi.org/10.1016/j.enconman.2016.04.030.
 
[19] D. Sera, R. Teodorescu, and P. Rodriguez, “Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimatimation”, In the proceedings of 2008 34th annual conference of IEEE Industrial Electronics, Orland, FL, USA, 10-13 November, pp. 2195-2199, 2008, https://doi.org/10.1109/IECON.2008.4758297.
 
[20] F. Khan, S.H. Back, Y. Park, and J.H. Kim, “Extraction of diode parameters of silicon solar ccells under high illumination conditions”, Energy convers. Manag., Vol. 76, pp. 421-429, 2013, https://doi.org/10.1016/j.enconman.2013.07.054.
 
[21] E.I. Batzelis, and S.A. Papathanassiou, “A method for the analytical extraction of the single-diode PV model parameters”, IEEE Trans. Sustain. Energy, Vol. 7, pp. 504-512, 2016, http://dx.doi.org/10.1109/TSTE.2015.2503435.
 
[22] M. Hejri, H. Mokhtari, M.R. Azizian, and L. Soder, “An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules”, Int. J. Sustain. Energy, Vol. 396-410, 2016, https://doi.org/10.1080/14786451.2013.863886.
 
[23] A. Senturk, and R. Eke, “A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values”, Renew. Energy, Vol. 103, pp. 58-69, 2017, https://doi.org/10.1016/j.renene.2016.11.025.
 
[24] A. Murtaza, U. Munir, M. Chiaberge, P. Di Leo, and F. Spertino, “Variable parameters for a single exponential model of photovoltaic modules in crystalline silicon”, Energies, Vol. 11, p. 2138, 2018, https://doi.org/10.3390/en11082138.
 
[25] H. Ibrahim, and N. Anani, “Evaluation of analytical merthods for parameter extraction of PV modules”, Energy procedia, Vol. 134, pp. 69-78, 2017, https://doi.org/10.1016/j.egypro.2017.09.601.
 
[26] G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, and G. Yao, “Parameter extraction of solar photovoltaic modelsby means of a hybrid differential evolution with whale optimization algorithm”, Sol. Energy, Vol. 176, pp. 742-761, 2018, https://doi.org/10.1016/j.solener.2018.10.050.
 
[27] F.J. Toldo, J.M. Blanes, and V. Galiano, “Two-step linear least-squares method for photovoltaic sinle diode model parameter extraction”, IEEE Trans. Ind. Electron, Vol. 65, pp. 6301-6308, 2018, https://doi.org/10.1109/TIE.2018.2793216.
 
[28] G. Ciulla, V. Lo Brano, V. Di Dio, and G.A. Cipriani, “Comparison of different one-diode models for the representation of I-V characteristic of a PV cell”,  Renew. Sustain, Energy Rev., Vol. 32, pp. 684-696, 2014, https://doi.org/10.1016/j.rser.2014.01.027.
 
[29] A. Babangida, J.B. Yerima, A.D. Ahmed, and S.C. Ezike, “Strategy to select and grade efficient dyes for enhanced phot-absorption”, African scientific reports, Vol. 1, pp. 16-22, 2022.
 
[30] J.B. Yerima, A. Babangida, S.C. Ezike, W. Dunama, and A.D. Ahmed, Matrix method of determining optical energy bandgap of natural dye extracts”, J. Appl. Sci. Environ. Manage., Vol. 26, pp. 943-948, 2022, https://doi.org/10.4314/jasem.v26i5.22.
 
[31] E.I. Batzelis, “Simple PV performance equations theoretically well-founded on the single-diode model”, IEEE J. Photovolt., Vol. 7, pp. 1400-1409, 2017, https://doi.org/10.1109/JPHOTOV.2017.2711431.
 
[32] J. Merten, J. Asensi, C. Voz, A. Shah, R. Platz, and J. Andreu, “Improved equivalent circuit and analytical model for amorphous silicon solar cells and module”, IEEE Trans. Electron devices, Vol.  45, pp. 423-429, 1998, https://doi.org/10.1109/16.658676.
 
[33] R. Alayi, H. Harasii, H. Pourderogar, “Modeling and optimization of photovoltaic cells with GA algorithm”, Journal of Robotics and Control (JRC), Vol. 2, pp. 35-41, 2021, https://doi.org/ 10.18196/jrc.2149.
 
[34] R. Alayi, M. Mohkam, S. R. Seyednouri, M. H. Ahmadi, and M. Sharifpur, “Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm”, Sustainability, Vol. 13, pp. 12420, 2021, https://doi.org/10.3390/ su132212420.
 
[35] A. Abbasi, R. Gammoudi, M. Ali Dami, O. Hasnaoui, and M. Jemli, “An improved single-diode model parameters extraction at different operating conditions with a view to modeling a photovoltaic generator: A comparative study”, Sol. Energy, Vol. 155, pp. 478-489, 2017, https://doi.org/10.1016/j.solener.2017.06.057.
 
[36] A.N. Celik and N. Acikgoz, “Modeling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five- parameter models”, Appl. Energy, Vol. 84, pp. 1-15, 2007, https://doi.org/10.1016/j.apenergy.2006.04.007.
 
[37] M. Hejri, H. Mokhtari, M.R. Azizianb, M. Ghandhari, and L. Soder, “On the parameter extraction of a five parameter double-diode model of photovoltaic cells and modules”, IEEE J. Photovolt, Vol. 4 pp. 915-923, 2014, https://doi.org/10.1109/JPHOTOV.2014.2307161.
 
[38] R. Alayi, M. Jahangiri, J.W.G. Guerrero, R. Akhmadeev, R.A. Shichiyakh, S.A. Zanghaneh, “Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms”, Clean Energy, Vol. 5,  pp. 713-730, 2021, https://doi.org/10.1093/ce/zkab041.
 
[39] H. Pourderogar, H. Harasi, R. Alayi, S. H. Delbari, M. Sadeghzadeh, and A. Javaherbakhsh, “Modeling and Technical Analysis of Solar Tracking System to Find Optimal Angle for Maximum Power Generation using MOPSO Algorithm”, Renewable Energy Research and Application, Vol. 1, pp. 211-222, 2019, https://doi.org/10.22044/rera.2020.9497.1027.
 
[40] S.C. Ezike, C.N. Hyelnasinyi, M. A. Salawu, J.F. Wansah, A.N. Ossai, and N.N. Agu, “Synergestic effect of chlorophyll and anthocyanin Co-sensitizers in TiO2-based dye-sensitized solar cells”, Surfaces and Interfaces, Vol. 22, pp. 100882, 2021, https://doi.org/10.1016/j.surfin.2020.100882.
 
[41] A. N Ossai, S. C Ezike, P. Timtere, and A. D. Ahmed, “Enhanced photovoltaic performance of dye-sensitized solar cells-based Carica papaya leaf and black cherry fruit co-sensitizers”, Chemical Physics Impact,Vol. 2, pp. 100024, 2021, https://doi.org/10.1016/j.chphi.2021.100024.
 
[42] U.I Ndeze, J. Aidan, S.C Ezike, and J.F Wansah, “Comparative performances of nature-based dyes extracted from Baobab and Shea leaves photo-sensitizers for dye-sensitized solar cells (DSSCs)”, Current Research in Green and Sustainable Chemistry, Vol. 4, pp. 100105, 2021, https://doi.org/10.1016/j.crgsc.2021.100105.
 
[43] M.A. Salawu, A. A Ayobami, A. Adebisi, S.C. Ezike, Y. O. Saheed, and A. B. Alabi, “Characterization of eosin red and hibiscus sabdariffa-based dye-sensitized solar cells”, Optical Materials, Vol. 127, pp. 112177, 2022, https://doi.org/10.1016/j.optmat.2022.112177.
 
[44] H.P Wante, J. Aidan, and S.C Ezike, “Efficient dye-sensitized solar cells (DSSCs) through atmospheric pressure plasma treatment of photoanode surface”, Current Research in Green and Sustainable Chemistry, Vol. 4, pp. 100218, 2021, https://doi.org/10.1016/j.crgsc.2021.100218.
 
[45] S.C. Ezike, G.M.Z. Kana, and A.O. Aina, “Progress and prospect on stability of perovskite photovoltaics”, Journal of Modern Materials, Vol. 4, pp. 16-30, 2017, https://doi.org/10.21467/jmm.4.1.16-30.
 
[46] A.M. Tayeb, A.A.A. Solyman, M. Hassan, and T. M. Abu el-Ella, “Modeling and simulation of dye-sensitized solar cell: Model verification for different semiconductors and dyes”, Alexandria Engineering Journal, Vol. 61, pp. 9249-9260, 2022.
 
[47] S.A. Badawy, E. Abdel-latif, A.A. Fadda, M.R. Elmorsy, “Synthesis of innovative triphenylamine-functionalized organic photosynthesizers outperformed the benchmark dye N719 for high-efficient dye-sensitized solar cells”, Sci Rep, Vol. 12, pp. 12885, 2022.
 
[48] R. Venkateswari and N. Rajasekar, “Reiview on power estimation techniques of solar photovoltaic system”, International Transaction on Electrical Energy System, Vol. 31, pp. e13113, 2021, https://doi.org/10.1002/2050-7038.13113.
 
[49] M.D. Abbot, T. Trupke, H.P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells”, Progress in Photovoltaics: Research and Applications, Vol. 15, pp. 613-620, 2007