[1] Design and Simulation of Grid Connected Solar Si-Poly Photovoltaic Plant using PVsyst for Pune, India Location. Renewable Energy Research and Applications (RERA) Volume 3, Issue 1, January 2022, Pages 41-49,
http://dx.doi.org/10.22044/rera.2021.11057.1069.
[2] Best Research-Cell Efficiency Chart, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html (accessed June 12, 2022).
[4] Colloidal Quantum Dot Solar Cells | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.5b00063 (accessed June 12, 2022).
[5] Brief review of cadmium telluride-based photovoltaic technologies, (n.d.). https://www.spiedigitallibrary.org/journals/journal-of-photonics-for-energy/volume-4/issue-01/040996/Brief-review-of-cadmium-telluride-based-photovoltaic-technologies/10.1117/1.JPE.4.040996.full?SSO=1 (accessed June 12, 2022).
[6] Cracking perylene diimide backbone for fullerene-free polymer solar cells | Natalia Terenti- Academia.edu, (n.d.). https://www.academia.edu/35367843/Cracking_perylene_diimide_backbone_for_fullerene-free_polymer_solar_cells (accessed June 12, 2022).
[7] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Lett. 13 (2013) 1764–1769.
https://doi.org/10.1021/nl400349b.
[8] S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and its Relation to Photovoltaic Performance, J Phys Chem Lett. 5 (2014) 1035–1039.
https://doi.org/10.1021/jz500279b.
[10] Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, (n.d.). https://www.science.org/doi/10.1126/science.1243982 (accessed June 12, 2022).
[11] A. Kojima, K. Teshima, and Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050–6051.
https://doi.org/10.1021/ja809598r.
[12] D. Liu and T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics. 8 (2014) 133–138.
https://doi.org/10.1038/nphoton.2013.342.
[13] Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications | The Journal of Physical Chemistry C, (n.d.). https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00920 (accessed June 12, 2022).
[14] Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6 | Chemistry of Materials, (n.d.). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b00433 (accessed June 12, 2022).
[15] Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality-Materials Horizons (RSC Publishing), (n.d.). https://pubs.rsc.org/en/content/articlelanding/2017/mh/c6mh00519e (accessed June 12, 2022).
[16] Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells | The Journal of Physical Chemistry B, (n.d.). https://pubs.acs.org/doi/10.1021/acs.jpcb.7b03921 (accessed June 12, 2022).
[17] Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells-Journal of Materials Chemistry A (RSC Publishing), (n.d.). https://pubs.rsc.org/en/content/articlelanding/2018/ta/c7ta10217h (accessed June 12, 2022).
[18] High-Performance Formamidinium-based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation | Chemistry of Materials, (n.d.). https://pubs.acs.org/doi/10.1021/acs.chemmater.7b00523 (accessed June 12, 2022).
[19] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun. 5 (2014) 3834.
https://doi.org/10.1038/ncomms4834.
[20] E. Mosconi, P. Umari, and F.D. Angelis, Electronic and optical properties of mixed Sn–Pb organohalide perovskites: a first principles investigation, J. Mater. Chem. A. 3 (2015) 9208–9215.
https://doi.org/10.1039/C4TA06230B.
[21] Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells | Journal of the American Chemical Society, (n.d.). https://pubs.acs.org/doi/10.1021/ja5033259 (accessed June 12, 2022).
[22] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A. 3 (2015) 23829–23832.
https://doi.org/10.1039/C5TA05741H.
[23] G. Niu, H. Yu, J. Li, D. Wang, and L. Wang, Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells, Nano Energy. 27 (2016) 87–94.
https://doi.org/10.1016/j.nanoen.2016.06.053.
[24] Enhancement of thermal stability for perovskite solar cells through cesium doping-RSC Advances (RSC Publishing), (n.d.). https://pubs.rsc.org/en/content/articlelanding/2017/ra/c6ra28501e (accessed June 12, 2022).
[25] Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios | ACS Applied Materials & Interfaces, (n.d.). https://pubs.acs.org/doi/abs/10.1021/acsami.6b12845 (accessed June 14, 2022).
[26] Die Gesetze der Krystallochemie | SpringerLink, (n.d.). https://link.springer.com/article/10.1007/BF01507527 (accessed June 12, 2022).
[27] Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys | Chemistry of Materials, (n.d.). https://pubs.acs.org/doi/10.1021/acs.chemmater.5b04107 (accessed June 12, 2022).
[29] Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications | ACS Energy Letters, (n.d.). https://pubs.acs.org/doi/10.1021/acsenergylett.7b01167 (accessed June 12, 2022).
[30] D. Kong, D. Cheng, X. Wang, K. Zhang, H. Wang, K. Liu, H. Li, X. Sheng, and L. Yin, Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics, J. Mater. Chem. C. 8 (2020) 1591–1597.
https://doi.org/10.1039/C9TC05711K.
[31] M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, X.C. Zeng, Y. Zhou, and N.P. Padture, Cesium Titanium(IV) Bromide Thin Films based Stable Lead-free Perovskite Solar Cells, Joule. 2 (2018) 558–570.
https://doi.org/10.1016/j.joule.2018.01.009.
[32] Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air-Journal of Materials Chemistry A (RSC Publishing), (n.d.). https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta09178h (accessed June 12, 2022).
[33] Highly reproducible perovskite solar cells based on solution coating from mixed solvents - Document-Gale Academic OneFile, (n.d.). https://go.gale.com/ps/i.do?id=GALE%7CA518490884&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00222461&p=AONE&sw=w&userGroupName=anon%7Ebc86b822 (accessed June 12, 2022).
[34] A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, and Q. Qiao, A strategic review on processing routes towards highly efficient perovskite solar cells, J. Mater. Chem. A. 6 (2018) 2406–2431.
https://doi.org/10.1039/C7TA08277K.
[35] A. Fakharuddin, L. Schmidt-Mende, G. Garcia-Belmonte, R. Jose, and I. Mora-Sero, Interfaces in Perovskite Solar Cells, Advanced Energy Materials. 7 (2017) 1700623.
https://doi.org/10.1002/aenm.201700623.
[36] M.A. Nalianya, C. Awino, H. Barasa, V. Odari, F. Gaitho, B. Omogo, and M. Mageto, Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D, Optik. 248 (2021) 168060.
https://doi.org/10.1016/j.ijleo.2021.168060.
[37] D.K. Jarwal, A.K. Mishra, A. Kumar, S. Ratan, A.P. Singh, C. Kumar, B. Mukherjee, and S. Jit, Fabrication and TCAD simulation of TiO
2 nanorods electron transport layer based perovskite solar cells, Superlattices and Microstructures. 140 (2020) 106463.
https://doi.org/10.1016/j.spmi.2020.106463.
[38] S. Hossei̇ni̇, M. Bahramgour, N. Deli̇baş, and A. Ni̇ai̇e, Investigation of a Perovskite Solar Cell and Various Parameters Impact on Its Layers and the Effect of Interface Modification by Using P3HT as an Ultrathin Polymeric Layer Through SCAPS-1D Simulation, Sakarya University Journal of Science. 25 (2021) 1168–1179.
https://doi.org/10.16984/saufenbilder.947735.
[39] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Advanced Materials. 25 (2013) 3727–3732.
https://doi.org/10.1002/adma.201301327.
[40] Novel graphene‐based transparent electrodes for perovskite solar cells-Iqbal-2018- International Journal of Energy Research-Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4244 (accessed June 12, 2022).
[41] Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability | Semantic Scholar, (n.d.). https://www.semanticscholar.org/paper/Low-temperature-processed-inverted-planar-solar-by-Chowdhury-Akhtaruzzaman/1989e25a31cf265aff03fcacc752607851780b70 (accessed June 12, 2022).
[42] Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells-Milić-2018- Advanced Materials Interfaces-Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201800416 (accessed June 12, 2022).
[43] MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20% | ACS Nano, (n.d.). https://pubs.acs.org/doi/abs/10.1021/acsnano.8b05514 (accessed June 12, 2022).
[44] Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, and S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots, J Am Chem Soc. 136 (2014) 3760–3763.
https://doi.org/10.1021/ja4132246.
[45] A numerical study of high efficiency ultra-thin CdS/CIGS solar cells: African Journal of Science, Technology, Innovation and Development: Vol. 8, No. 4, (n.d.). https://www.tandfonline.com/doi/abs/10.1080/20421338.2015.1118929 (accessed June 13, 2022).
[46] Modeling thin‐film PV devices-Burgelman-2004-Progress in Photovoltaics: Research and Applications-Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/10.1002/pip.524 (accessed June 13, 2022).
[47] M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software, Energy Procedia. 74 (2015) 736–744. https://doi.org/10.1016/j.egypro.2015.07.809.
[48] R.T. Mouchou, T.C. Jen, O.T. Laseinde, and K.O. Ukoba, Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS, Materials Today: Proceedings. 38 (2021) 835–841. https://doi.org/10.1016/j.matpr.2020.04.880.
[49] A. Slami, M. Bouchaour, and L. Merad, Numerical Study of Based Perovskite Solar Cells by SCAPS-1D, INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT. 13 (2019) 5.
[50] Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/abs/pii/S0030402620315916 (accessed June 13, 2022).
[51] E. Widianto, E. Subama, N.M. Nursam, K. Triyana, and I. Santoso, Design and simulation of perovskite solar cell using graphene oxide as hole transport material, AIP Conference Proceedings. 2391 (2022) 090011. https://doi.org/10.1063/5.0073007.
[52] S.S. Mali and C.K. Hong, p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides, Nanoscale. 8 (2016) 10528–10540.
https://doi.org/10.1039/C6NR02276F.
[53] N. Jensen, R.M. Hausner, R.B. Bergmann, J.H. Werner, and U. Rau, Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells, Progress in Photovoltaics: Research and Applications. 10 (2002) 1–13. https://doi.org/10.1002/pip.398.
[54] Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL | Semantic Scholar, (n.d.). https://www.semanticscholar.org/paper/Enhancing-the-open-circuit-voltage-of-the-SnS-based-Ahmmed-Aktar/3ae20147f81aa5b95fc84216bc4a5bd37dfd5468 (accessed June 14, 2022).
[55] Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation - NASA/ADS, (n.d.). https://ui.adsabs.harvard.edu/abs/2020OptMa.10109738A/abstract (accessed June 13, 2022).
[56] Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation: Journal of Vacuum Science & Technology B: Vol. 39, No. 1, (n.d.). https://avs.scitation.org/doi/10.1116/6.0000718 (accessed June 13, 2022).