[1] Z. Liao, L. Wei, A. M. Dafalla, J. Guo, and F. Jiang, Analysis of the Impact of Flow Field Arrangement on the Performance of PEMFC with Zigzag-Shaped Channels, Int. J. Heat Mass Transf. 181, 121900 (2021).
[2] A. P. Sasmito, J. C. Kurnia, and A. S. Mujumdar, Numerical Evaluation of Various Gas and Coolant Channel Designs for High Performance Liquid-Cooled Proton Exchange Membrane Fuel Cell Stacks, Energy 44 (2012).
[3] N. Limjeerajarus and P. Charoen-Amornkitt, Effect of Different Flow Field Designs and Number of Channels on Performance of a Small PEFC, Int. J. Hydrogen Energy 40 (2015).
[4] V. Velisala and G. Naga Srinivasulu, Computational Fluid Dynamics Study of 3-Pass Serpentine Flow Field Configuration on Proton Exchange Membrane Fuel Cell Performance, Int. J. Ambient Energy 41 (2020).
[5] V. Velisala and G. N. Srinivasulu, Numerical Simulation and Experimental Comparison of Single, Double and Triple Serpentine Flow Channel Configuration on Performance of a PEM Fuel Cell, Arab. J. Sci. Eng. 43 (2018).
[6] H. C. Liu, W. M. Yan, C. Y. Soong, F. Chen, and H. S. Chu, Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design, J. Power Sources 158 (2006).
[7] S. W. Perng and H. W. Wu, Non-Isothermal Transport Phenomenon and Cell Performance of a Cathodic PEM Fuel Cell with a Baffle Plate in a Tapered Channel, Appl. Energy 88 (2011).
[8] C. Wang, Q. Zhang, J. Lu, S. Shen, X. Yan, F. Zhu, X. Cheng, and J. Zhang, Effect of Height/Width-Tapered Flow Fields on the Cell Performance of Polymer Electrolyte Membrane Fuel Cells, Int. J. Hydrogen Energy 42 (2017).
[9] R. R. Kumar, S. Suresh, T. Suthakar, and V. K. Singh, Experimental Investigation on PEM Fuel Cell Using Serpentine with Tapered Flow Channels, Int. J. Hydrogen Energy 45 [10] A. D. James Larminie, Wiley: Fuel Cell Systems Explained, 2nd Edition (2003).
[10] L. James and A. Dicks, Fuel Cell Systems Explained, (2003).
[11] E. Carcadea, M. S. Ismail, D. Bin Ingham, L. Patularu, D. Schitea, A. Marinoiu, D. Ion-Ebrasu, D. Mocanu, and M. Varlam, Effects of Geometrical Dimensions of Flow Channels of a Large-Active-Area PEM Fuel Cell: A CFD Study, Int. J. Hydrogen Energy 46 (2021).
[12] B. Tu, Y. Yin, F. Zhang, X. Su, X. Lyu, M. Cheng, and M. Cheng, High Performance of Direct Methane-Fuelled Solid Oxide Fuel Cell with Samarium Modified Nickel-based Anode (2020).
[13] S. Abdulla and V. S. Patnaikuni, Performance Evaluation of Enhanced Cross Flow Split Serpentine Flow Field Design for Higher Active Area PEM Fuel Cells, Int. J. Hydrogen Energy 45 (2020).
[14] Fuel Cells Module Manual, (2009).
[15] N. Akhtar and P. J. A. M. Kerkhof, Dynamic Behavior of Liquid Water Transport in a Tapered Channel of a Proton Exchange Membrane Fuel Cell Cathode, Int. J. Hydrogen Energy 36 (2011).
[16] J. M. Sierra, J. Moreira, and P. J. Sebastian, Numerical Analysis of the Effect of Different Gas Feeding Modes in a Proton Exchange Membrane Fuel Cell with Serpentine Flow-Field, J. Power Sources 196 (2011).
[17] S. Latorrata, P. Gallo Stampino, C. Cristiani, and G. Dotelli, Novel Superhydrophobic Gas Diffusion Media for PEM Fuel Cells: Evaluation of Performance and Durability, Chem. Eng. Trans. 41 (2014).
[18] J. Wu, J. J. Martin, F. P. Orfino, H. Wang, C. Legzdins, X. Z. Yuan, and C. Sun, In Situ Accelerated Degradation of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cell. Part I: Effect of Elevated Temperature and Flow Rate, J. Power Sources 195, (2010).
[19] A. Sorrentino, K. Sundmacher, and T. Vidakovic-Koch, Polymer Electrolyte Fuel Cell Degradation Mechanisms and Their Diagnosis by Frequency Response Analysis Methods: A Review, Energies, 14 (2020).
[20] M. Arif, S. C. P. Cheung, and J. Andrews, A Systematic Approach for Matching Simulated and Experimental Polarization Curves for a PEM Fuel Cell, Int. J. Hydrogen Energy (2019).