[1] NEOM : Made to chanage, 2022. (n.d.). https://www.neom.com/ (accessed December 7, 2022).
[2] NEOM - vision 2030, (2022). https://www.vision2030.gov.sa/v2030/v2030-projects/neom/ (accessed December 7, 2022).
[3] R. Farmani, D. Butler, D.V.L. Hunt, F.A. Memon, H. Abdelmeguid, S. Ward, C.D.F. Rogers, Scenario-based sustainable water management and urban regeneration, Proc. Inst. Civ. Eng. Eng. Sustain. 165 (2012) 89–98.
https://doi.org/10.1680/ensu.2012.165.1.89.
[4] F.A. Memon, D. Butler, R. Farmani, H. Abdelmeguid, S. Atkinson, C. Rogers, D. Hunt, Urban Futures – Sustainability (Resilience) Evaluation of Water Infrastructure, 2011 AEESP Educ. Res. Conf. (2011).
[5] S. Ward, H. Abdelmeguid, R. Farmani, F.A. Memon, D. Butler, Sustainable water management - Modelling acceptability for decision support: A methodology, Urban Water Manag. Challenges Oppurtunities - 11th Int. Conf. Comput. Control Water Ind. CCWI 2011. 1 (2011).
[6] R. Farmani, D. Butler, F. Memon, H. Abdelmeguid, S. Ward, Sustainable water management for urban regeneration, Futur. Urban Water Solut. Livable Resilient Cities. (2011).
[7] M. Abu Mallouh, H. AbdelMeguid, M. Salah, A comprehensive comparison and control for different solar water heating system configurations, Eng. Sci. Technol. an Int. J. 35 (2022) 101210.
https://doi.org/10.1016/j.jestch.2022.101210.
[8] I.I. El-Sharkawy, H. AbdelMeguid, B.B. Saha, Potential application of solar powered adsorption cooling systems in the Middle East, Appl. Energy. 126 (2014) 235–245.
https://doi.org/10.1016/j.apenergy.2014.03.092.
[9] I.I. El-Sharkawy, H. Abdelmaguid, B.B. Saha, S. Koyama, T. Miyazaki, Performance Investigation of A Solar-Powered Adsorption Cooling System: A Case Study for Egypt, Int. Symp. Innov. Mater. Process. Energy Syst. 2013. (2013).
[10] I.I. El-Sharkawy, H. Abdelmeguid, B.B. Saha, Towards an optimal performance of adsorption chillers: Reallocation of adsorption/desorption cycle times, Int. J. Heat Mass Transf. 63 (2013) 171–182. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.076.
[11] M. Elsharkawy, H. AbdelMeguid, I.I. El-Sharkawy, L. Rabie, Experimental and theoretical investigation of decentralized desalination system, Mansoura Eng. J. 39 (2014).
[12] A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, K. Fujii, A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells, Appl. Phys. Express. 8 (2015).
https://doi.org/10.7567/APEX.8.107101.
[13] S. Sukpancharoen and N. Phetyim, Green hydrogen and electrical power production through the integration of CO2 capturing from biogas: Process optimization and dynamic control, Energy Reports. 7 (2021) 293–307.
https://doi.org/10.1016/j.egyr.2021.06.048.
[14] H. Albalawi, M.E. El-Shimy, H. AbdelMeguid, A.M. Kassem, S.A. Zaid, Analysis of a Hybrid Wind/Photovoltaic Energy System Controlled by Brain Emotional Learning-Based Intelligent Controller, Sustainability. 14 (2022) 4775.
https://doi.org/10.3390/su14084775.
[15] S.A. Zaid, H. Albalawi, H. AbdelMeguid, T.A. Alhmiedat, A. Bakeer, Performance Improvement of H8 Transformerless Grid-Tied Inverter Using Model Predictive Control Considering a Weak Grid, Processes. 10 (2022) 1243.
https://doi.org/10.3390/pr10071243.
[16] A. Shafieian, M. Rizwan Azhar, M. Khiadani, T. Kanti Sen, Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream, Sustain. Energy Technol. Assessments. 39 (2020).
https://doi.org/10.1016/j.seta.2020.100715.
[17] A. Criscuoli, M.C. Carnevale, Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems, Energies. 15 (2022).
https://doi.org/10.3390/en15165990.
[18] G. Zaragoza, A. Ruiz-Aguirre, E. Guillén-Burrieza, Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production, Appl. Energy. 130 (2014) 491–499.
https://doi.org/10.1016/j.apenergy.2014.02.024.
[19] A. Shafieian, M. Rizwan Azhar, M. Khiadani, T. Kanti Sen, Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream, Sustain. Energy Technol. Assessments. 39 (2020).
https://doi.org/10.1016/j.seta.2020.100715.
[20] M.S. Elzayed, M.A.M. Ahmed, M.A. Antar, M.H. Sharqawy, S.M. Zubair, The impact of thermodynamic balancing on the performance of a humidification dehumidification desalination system, Therm. Sci. Eng. Prog. 21 (2021).
https://doi.org/10.1016/j.tsep.2020.100794.
[21] A.S.A. Mohamed, A.G. Shahdy, and M. Salem Ahmed, Investigation on solar humidification dehumidification water desalination system using a closed-air cycle, Appl. Therm. Eng. 188 (2021).
https://doi.org/10.1016/j.applthermaleng.2021.116621.
[22] A.M. Abdel Dayem and A. AlZahrani, Psychometric study and performance investigation of an efficient evaporative solar HDH water desalination system, Sustain. Energy Technol. Assessments. 52 (2022) 102030.
https://doi.org/10.1016/j.seta.2022.102030.
[23] R.A. Khalaf-Allah, G.B. Abdelaziz, M.G. Kandel, and A.S. Easa, Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions, Renew. Energy. 190 (2022) 1041–1054.
https://doi.org/10.1016/j.renene.2022.04.019.
[24] A. Prakash and R. Jayaprakash, Performance evaluation of stepped multiple basin pyramid solar still, Mater. Today Proc. 45 (2021) 1950–1956.
https://doi.org/10.1016/j.matpr.2020.09.227.
[25] A.S. Abdullah, Z.M. Omara, F.A. Essa, A. Alarjani, I.B. Mansir, and M.I. Amro, Enhancing the solar still performance using reflectors and sliding-wick belt, Sol. Energy. 214 (2021) 268–279.
https://doi.org/10.1016/j.solener.2020.11.016.
[26] M.M.Z. Ahmed, F. Alshammari, A.S. Abdullah, and M. Elashmawy, Experimental investigation of a low cost inclined wick solar still with forced continuous flow, Renew. Energy. 179 (2021) 319–326.
https://doi.org/10.1016/j.renene.2021.07.059.
[27] H.S. Mohaisen, J.A. Esfahani, and M.B. Ayani, Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study, Renew. Energy. 168 (2021) 170–180.
https://doi.org/10.1016/j.renene.2020.12.056.
[28] A. Ramzy, H. AbdelMeguid, and W.M. ElAwady, A novel approach for enhancing the utilization of solid desiccants in packed bed via intercooling, Appl. Therm. Eng. 78 (2015) 82–89.
https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2014.12.035.
[29] A. Ramzy, W.M. Elawady, and H. Abdelmeguid, Modelling of heat and moisture transfer in desiccant packed bed utilizing spherical particles of clay impregnated with CaCl 2, Appl. Therm. Eng. 66 (2014) 499–506.
https://doi.org/10.1016/j.applthermaleng.2014.02.031.
[30] R. Best and I. Pilatowsky, Solar assisted cooling with sorption systems: status of the research in Mexico and Latin America, Int. J. Refrig. 21 (1998) 100–115. https://doi.org/https://doi.org/10.1016/S0140-7007(97)00051-0.
[31] Y. Lu and J. Wang, Thermodynamics Performance Analysis of Solar-assisted Combined Cooling, Heating and Power System with Thermal Storage, Energy Procedia. 142 (2017) 3226–3233.
https://doi.org/10.1016/j.egypro.2017.12.495.
[32] B.J. Huang, J.H. Wu, H.Y. Hsu, and J.H. Wang, Development of hybrid solar-assisted cooling/heating system, Energy Convers. Manag. 51 (2010) 1643–1650.
https://doi.org/https://doi.org/10.1016/j.enconman.2009.07.026.
[33] R. Sun, C.L. Yang, M.S. Wang, and X.G. Ma, High solar-to-hydrogen efficiency photocatalytic hydrogen evolution reaction with the HfSe2/InSe heterostructure, J. Power Sources. 547 (2022) 232008.
https://doi.org/10.1016/j.jpowsour.2022.232008.
[34] H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, and K. Domen, Photocatalytic solar hydrogen production from water on a 100-m2 scale, Nature. 598 (2021) 304–307.
https://doi.org/10.1038/s41586-021-03907-3.
[35] J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen, J.W.D. Ng, T. Bilir, J.S. Harris, and T.F. Jaramillo, Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%, Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms13237.
[36] K.G.U. Wijayatha, Photoelectrochemical cells for hydrogen generation, 2012.
https://doi.org/10.1533/9780857096371.1.91.
[37] H. Qiao, Y. Zhang, Z.H. Yan, L. Duan, L. Ni, J. Bin Fan, A type-II GaN/InS van der Waals heterostructure with high solar-to-hydrogen efficiency of photocatalyst for water splitting, Appl. Surf. Sci. 604 (2022) 154602.
https://doi.org/10.1016/j.apsusc.2022.154602.
[38] M.J. Palys and P. Daoutidis, Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study, Comput. Chem. Eng. 136 (2020) 106785.
https://doi.org/10.1016/j.compchemeng.2020.106785.
[39] D. Pashchenko, R. Mustafin, and I. Karpilov, Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system, Energy. 252 (2022).
https://doi.org/10.1016/j.energy.2022.124081.
[40] X. Chen, Q. Liu, W. Zhao, R. Li, Q. Zhang, and Z. Mou, Experimental and chemical kinetic study on the flame propagation characteristics of ammonia/hydrogen/air mixtures, Fuel. 334 (2023) 126509.
https://doi.org/10.1016/j.fuel.2022.126509.
[41] binbin wang, C. Yang, H. Wang, D. Hu, B. Duan, yinyan Wang, Study on Injection Strategy of Ammonia/Hydrogen Dual Fuel Engine Under Different Compression Ratios, SSRN Electron. J. 334 (2022) 126666.
https://doi.org/10.2139/ssrn.4190900.
[42] M.A. Yildirim, A. Cebula, and M. Sułowicz, A cooling design for photovoltaic panels – Water-based PV/T system, Energy. 256 (2022).
https://doi.org/10.1016/j.energy.2022.124654.
[43] E. Arslan, M. Aktaş, and Ö.F. Can, Experimental and numerical investigation of a novel photovoltaic thermal (PV/T) collector with the energy and exergy analysis, J. Clean. Prod. 276 (2020).
https://doi.org/10.1016/j.jclepro.2020.123255.
[44] S. Sukumaran and K. Sudhakar, Performance analysis of solar powered airport based on energy and exergy analysis, Energy. 149 (2018) 1000–1009.
https://doi.org/10.1016/j.energy.2018.02.095.
[45] A. Kumar Behura, A. Kumar, D. Kumar Rajak, C.I. Pruncu, and L. Lamberti, Towards better performances for a novel rooftop solar PV system, Sol. Energy. 216 (2021) 518–529.
https://doi.org/10.1016/j.solener.2021.01.045.
[46] NASA POWER project, (2021). https://power.larc.nasa.gov/ (accessed October 31, 2021).
[47] G. Najeh, G. Slimane, M. Souad, B. Riad, E.G. Mohammed, Performance of silica gel-water solar adsorption cooling system, Case Stud. Therm. Eng. 8 (2016) 337–345.
https://doi.org/10.1016/j.csite.2016.07.002.
[48] M.B. Elsheniti, A. Rezk, M. Shaaban, M. Roshdy, Y.M. Nagib, O.A. Elsamni, and B.B. Saha, Performance of a solar adsorption cooling and desalination system using aluminum fumarate and silica gel, Appl. Therm. Eng. 194 (2021).
https://doi.org/10.1016/j.applthermaleng.2021.117116.
[49] Y.M. Liu, Z.X. Yuan, X. Wen, C.X. Du, Evaluation on performance of solar adsorption cooling of silica gel and SAPO-34 zeolite, Appl. Therm. Eng. 182 (2021).
https://doi.org/10.1016/j.applthermaleng.2020.116019.
[50] W.S. Chang, C.C. Wang, and C.C. Shieh, Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller, Appl. Therm. Eng. 29 (2009) 2100–2105.
https://doi.org/10.1016/j.applthermaleng.2008.10.021.