Document Type : Original Article

Authors

1 Mechanical Engineering Department, National Institute of Technology, Warangal, Telengana, India.

2 Mechanical Engineering Department, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.

Abstract

Fuel cells have been identified as a promising technology to meet future electric power requirements. Out of various fuel cells, Proton Exchange Membrane Fuel Cells (PEMFC) has been staged up as they can operate at low temperatures and also have high power density. In this article, the flow field design of a Single Serpentine Flow Field (SSFF) has been modified to L-Serpentine Flow Field (LSFF) in order to reduce thermal and water management problems in PEMFC. A numerical study was conducted on 441 mm2 active area at 700C and 3 atm operating conditions, to evaluate various flow characteristics by comparing LSFF with SSFF, and it was observed that temperature and species flux distribution in LSFF enhanced significantly. The modification of the flow field yielded remarkable improvements in various aspects. These enhancements included a more uniform distribution of membrane water content, an impressive 8% increase in O2 consumption, a remarkable 22% improvement in product evacuation demonstrated by the H2O species profile, attributed to a 40% reduction in product travel distance. Additionally, a noteworthy 10% increase in power density was achieved. Despite a slight increase in pressure drop due to the additional bends and turns in the modified flow field, the impact on power density remained insignificant. These findings highlight the immense potential of the modified flow field to significantly enhance performance.

Keywords

Main Subjects

[1] A. Garai and D. K. Pandey, 2022, “EPRA International Journal of Research and Development ( IJRD ) Role of renewable energy for clean energy transition plan for india and determination of retariff under cerc terms and conditions of resources regulations , 2020 EPRA International Journal of,” Vol. 7838, No. July, pp. 51–56.
[2] I. Dincer and C. Acar, 2014, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, Vol. 40, No. 34, pp. 11094–11111, doi: 10.1016/j.ijhydene.2014.12.035.
[3] S. Mohanty, A. N. Desai, S. Singh, V. Ramadesigan, and S. M, 2021, “Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel,” Int. J. Hydrogen Energy, Vol. 46, No. 39, pp. 20650–20663, doi: 10.1016/j.ijhydene.2021.03.252.
[4] Z. Zhang, S. Wu, H. Miao, and T. Zhang, 2022, “Numerical Investigation of Flow Channel Design and Tapered Slope Effects on PEM Fuel Cell Performance,” Sustain., Vol. 14, No. 18, doi: 10.3390/su141811167.
[5] M. Shaygan, M. A. Ehyaei, A. Ahmadi, M. E. H. Assad, and J. L. Silveira, 2019, “Energy, exergy, advanced exergy and economic analyses of hybrid polymer electrolyte membrane (PEM) fuel cell and photovoltaic cells to produce hydrogen and electricity,” J. Clean. Prod., Vol. 234, pp. 1082–1093, doi: 10.1016/j.jclepro.2019.06.298.
[6] I. Korkischko, B. S. Carmo, and F. C. Fonseca, 2017, “Shape Optimization of PEMFC Flow-channel Cross-Sections,” Fuel Cells, Vol. 17, No. 6, pp. 809–815, doi: 10.1002/FUCE.201700168.
[7] R. Kumar, A. V. Babu, and S. H. Sonawane, 2022, “Numerical investigation of a novel rhombohedral interconnector configuration for planar solid oxide fuel cells,” Int. J. Green Energy, Vol. 00, Nno. 00, pp. 1–12, doi: 10.1080/15435075.2022.2154609.
[8] M. Boni, S. Srinivasa Rao, and G. Naga Srinivasulu, 2020, “Performance evaluation of an air breathing–direct methanol fuel cell with different cathode current collectors with liquid electrolyte layer,” Asia-Pacific J. Chem. Eng., Vol. 15, No. 4, p. e2465, doi: 10.1002/APJ.2465.
[9] M. Boni, S. S. Rao, and G. N. Srinivasulu, 2021, “Performance evaluation of the incorporation of different wire meshes in between perforated current collectors and membrane electrode assembly on the Passive Direct methanol fuel cell,” Chinese J. Chem. Eng., Vol. 32, pp. 360–367, doi: 10.1016/J.CJCHE.2020.07.038.
[10] B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini, and M. I. Rosli, 2016, “Effects of flow field design on water management and reactant distribution in PEMFC: a review,” Ionics 2016 223, Vol. 22, No. 3, pp. 301–316, doi: 10.1007/S11581-016-1644-Y.
[11] S. N. Ozdemir and İ. Taymaz, 2021, “CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance,” Sak. Univ. J. Sci., No. June, doi: 10.16984/saufenbilder.901153.
[12] R. Roshandel, F. Arbabi, and G. K. Moghaddam, 2011, “Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells”, doi: 10.1016/j.renene.2011.10.008.
[13] S. R. Badduri, G. N. Srinivasulu, and S. S. Rao, 2020, “Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell,” Chinese J. Chem. Eng., Vol. 28, No. 3, pp. 824–831, doi: 10.1016/j.cjche.2019.07.010.
[14] Z. Liao, L. Wei, A. M. Dafalla, J. Guo, and F. Jiang, 2021, “Analysis of the impact of flow field arrangement on the performance of PEMFC with zigzag-shaped channels,” Int. J. Heat Mass Transf., Vol. 181, p. 121900, doi: 10.1016/j.ijheatmasstransfer.2021.121900.
[15] W. He, J. S. Yi, and T. Van Nguyen, 2000, “Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields,” AIChE J., Vol. 46, No. 10, pp. 2053–2064, doi: 10.1002/AIC.690461016.
[16] N. Limjeerajarus and P. Charoen-Amornkitt, 2015, “Effect of different flow field designs and number of channels on performance of a small PEFC,” Int. J. Hydrogen Energy, Vol. 40, No. 22, doi: 10.1016/j.ijhydene.2015.04.007.
[17] V. Velisala and G. N. Srinivasulu, 2018, “Numerical Simulation and Experimental Comparison of Single, Double and Triple Serpentine Flow Channel Configuration on Performance of a PEM Fuel Cell,” Arab. J. Sci. Eng., Vol. 43, No. 3, doi: 10.1007/s13369-017-2813-7.
[18] M. K. Vijayakrishnan et al., “Numerical and experimental investigation on 25 cm2 and 100 cm2 PEMFC with novel sinuous flow field for effective water removal and enhanced performance,” International Journal of Hydrogen Energy, Vol. 45, No. 13. pp. 7848–7862, 2020. doi: 10.1016/j.ijhydene.2019.05.205.
[19] A. Kazim, H. T. Liu, and P. Forges, 1999, “Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields,” J. Appl. Electrochem., Vol. 29, No. 12, pp. 1409–1416, doi: 10.1023/A:1003867012551/METRICS.
[20] T. Wilberforce et al., 2019, “A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells,” Renew. Sustain. Energy Rev., Vol. 111, No. May, pp. 236–260, doi: 10.1016/j.rser.2019.04.081.
[21] M. Liu, H. Huang, X. Li, X. Guo, T. Wang, and H. Lei, 2021, “Geometry optimization and performance analysis of a new tapered slope cathode flow field for PEMFC,” Int. J. Hydrogen Energy, Vol. 46, No. 75, pp. 37379–37392, doi: 10.1016/j.ijhydene.2021.09.022.
[22] A. L. R. Paulino, E. F. Cunha, E. Robalinho, M. Linardi, I. Korkischko, and E. I. Santiago, 2017, “CFD Analysis of PEMFC Flow Channel Cross Sections,” Fuel Cells, Vol. 17, No. 1, pp. 27–36, doi: 10.1002/FUCE.201600141.
[23] J. S. Yi, J. D. Yang, and C. King, 2004, “Water management along the flow channels of PEM fuel cells,” AIChE J., Vol. 50, No. 10, pp. 2594–2603, doi: 10.1002/AIC.10307.
[24] A. Iranzo, C. H. Arredondo, A. M. Kannan, and F. Rosa, “Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends,” Energy, Vol. 190. Elsevier Ltd, p. 116435, 2020. doi: 10.1016/j.energy.2019.116435.
[25] S. R. Badduri, G. N. Srinivasulu, and S. S. Rao, 2019, “Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate,” Int. J. Green Energy, Vol. 16, No. 15, pp. 1591–1601, doi: 10.1080/15435075.2019.1677238.
[26] M. Marappan et al., 2021, “Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review,” Chem. Rec., Vol. 21, No. 4, pp. 663–714, doi: 10.1002/tcr.202000138.
[27] D. H. Jeon, S. Greenway, S. Shimpalee, and J. W. Van Zee, 2008, “The effect of serpentine flow-field designs on PEM fuel cell performance,” Int. J. Hydrogen Energy, Vol. 33, No. 3, pp. 1052–1066, doi: 10.1016/J.IJHYDENE.2007.11.015.
[28] R. Kumar, A. V. Babu, and S. H. Sonawane, 2022, “Performance evaluation of a trapezoidal interconnector configuration of solid oxide fuel cell: A numerical study,” Int. J. Energy Res., doi: 10.1002/ER.8656.
[29] A. M. Prasad, P. Lavanya, P. Hara Gopal, T. Praveen Sagar, and S. Pavani, 2019, “Experimental investigation of proton exchange membrane (Pem) fuel cell using different serpentine flow channels,” Mater. Sci. Forum, Vol. 969 MSF, pp. 461–465, doi: 10.4028/WWW.SCIENTIFIC.NET/MSF.969.461.
[30] G. Amarnath and A. V. Babu, 2023, “Comparative computational fluid dynamic analysis between split and dual serpentine flow field for proton exchange membrane fuel cells.,” Chem. Pap., [Online]. Available: https://doi.org/10.1007/s11696-023-02841-0
[31] J. M. Sierra, S. J. Figueroa-Ramírez, S. E. Díaz, J. Vargas, and P. J. Sebastian, 2014, “Numerical evaluation of a PEM fuel cell with conventional flow fields adapted to tubular plates,” Int. J. Hydrogen Energy, Vol. 39, No. 29, pp. 16694–16705, doi: 10.1016/j.ijhydene.2014.04.078.
[32] S. Abdulla and V. S. Patnaikuni, 2019, “Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross-flow split serpentine flow field design,” Int. J. Energy Res., Vol. 43, No. 7, pp. 2806–2820, doi: 10.1002/er.4368.
[33] Ansys, 2009, “Fuel Cells Module Manual,” Manual, No. April.
[34] P. T. Nguyen, T. Berning, and N. Djilali, 2004, “Computational model of a PEM fuel cell with serpentine gas flow channels,” J. Power Sources, Vol. 130, No. 1–2, pp. 149–157, doi: 10.1016/j.jpowsour.2003.12.027.
[35] S. Abdulla, M. Mohan, S. Venkata, and S. Patnaikuni, 2020, “Performance Comparison of PEM Fuel Cell with Enhanced Cross ‑ Flow Split Serpentine and Single Serpentine Flow Field Designs,” Arab. J. Sci. Eng., Vol. 45, No. 9, pp. 7691–7703, doi: 10.1007/s13369-020-04803-0.
[36] L. Wang, A. Husar, T. Zhou, and H. Liu, 2003, “A parametric study of PEM fuel cell performances,” Int. J. Hydrogen Energy, Vol. 28, No. 11, pp. 1263–1272, doi: 10.1016/S0360-3199(02)00284-7.
[37] O. Ryan, C. Suk-Won, C. Whitney, and B. P. Fritz, Fuel cell fundamentals, Third. John Wiley & sons, Inc., Hoboken,New Jersey, 2009. doi: 10.1007/978-0-387-73532-0_1.
[38] F. Barbir, PEM Fuel Cells, Second Edi. 2013. doi: 10.1016/b978-0-12-387710-9.02001-4.
[39] E. E. Kahveci and I. Taymaz, 2018, “Assessment of single-serpentine PEM fuel cell model developed by computational fluid dynamics,” Fuel, Vol. 217, No. August 2017, pp. 51–58, doi: 10.1016/j.fuel.2017.12.073.
[40] X. Liu, H. Guo, F. Ye, and C. F. Ma, 2008, “Flow dynamic characteristics in flow field of proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, Vol. 33, No. 3, pp. 1040–1051, doi: 10.1016/j.ijhydene.2007.11.018.
[41] V. Lakshminarayanan and P. Karthikeyan, 2016, “Optimization of Flow Channel Design and Operating Parameters on Proton Exchange Membrane Fuel Cell Using,” Period. Polytech. Chem. Eng., Vol. 60, No. 3, pp. 173–180, doi: 10.3311/PPch.8461.
[42] Y. Amadane, H. Mounir, A. El Marjani, E. M. Karim, and A. Awan, 2019, “Numerical investigation of hydrogen consumption in Proton Exchange Membrane Fuel Cell by using computational fluid dynamics (CFD) simulation,” Mediterr. J. Chem., Vol. 7, No. 6, pp. 396–415, doi: 10.13171/mjc7618121415ya.
[43] A. Iranzo, M. Muñoz, F. Rosa, and J. Pino, 2010, “Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation,” Int. J. Hydrogen Energy, Vol. 35, No. 20, pp. 11533–11550, doi: 10.1016/j.ijhydene.2010.04.129.
[44] S. Dutta, S. Shimpalee, and J. W. Van Zee, 2001, “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,” Int. J. Heat Mass Transf., Vol. 44, No. 11, pp. 2029–2042, doi: 10.1016/S0017-9310(00)00257-X.
[45] S. Shimpalee, S. Greenway, and J. W. Van Zee, 2006, “The impact of channel path length on PEMFC flow-field design,” J. Power Sources, Vol. 160, No. 1, pp. 398–406, doi: 10.1016/j.jpowsour.2006.01.099.
[46] Y. Zhu, A. Y. Tremblay, G. A. Facey, and M. Ternan, 2015, “Petroleum Diesel and Biodiesel Fuels Used in a Direct Hydrocarbon Phosphoric Acid Fuel Cell,” J. Fuels, Vol. 2015, pp. 1–9, doi: 10.1155/2015/915015.
[47] L. Yuan, Z. Jin, P. Yang, Y. Yang, D. Wang, and X. Chen, 2021, “Numerical analysis of the influence of different flow patterns on power and reactant transmission in tubular-shaped pemfc,” Energies, Vol. 14, No. 8, doi: 10.3390/en14082127.