[3] Z. Xu, X. Xu, C. Cui, and H. Huang, "A new uniformity coefficient parameter for the quantitative characterization of a textured wafer surface and its relationship with the photovoltaic conversion efficiency of monocrystalline silicon cells," Solar Energy, vol. 191, pp. 210-218, 2019/10/01/ 2019. Available:
https://www.sciencedirect.com/science/article/pii/S0038092X19308096
[6] A. A. Romanov, D. Oettl, B. A. Gusev, A. N. Tamarovskaya, J. M. Lopez-Cepero, E. V. Leonenko, et al., "Environmental efficiency of the fossil fuels to electricity transition in Eastern Siberia cities," Atmospheric Pollution Research, vol. 14, p. 101672, 2023/02/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S1309104223000260
[8] W. S. Ebhota, "Power accessibility, fossil fuel and the exploitation of small hydropower technology in sub-Saharan Africa," International Journal of Sustainable Energy Planning and Management vol. 19, 2019. Available:
https://doi.org/10.5278/ijsepm.2019.19.3
[12] M. Shabbir Alam, P. Duraisamy, A. Bakkar Siddik, M. Murshed, H. Mahmood, M. Palanisamy, et al., "The impacts of globalization, renewable energy, and agriculture on CO2 emissions in India: Contextual evidence using a novel composite carbon emission-related atmospheric quality index," Gondwana Research, vol. 119, pp. 384-401, 2023/07/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S1342937X2300117X
[13] Z. Sun, X. Wang, L. Duan, and Z. Sun, "Deoxygenation-based CO2 mitigation: State-of-the-art, challenges, and prospects," Current Opinion in Green and Sustainable Chemistry, vol. 40, p. 100758, 2023/04/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S245222362300007X
[16] IPCC. (2018, 09/12/2019). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland.
[17] UN, "Glasgow COP26: Uniting the world to tackle climate change," presented at the 26
th The United Nations (UN) Climate Change Conference of the Parties (COP26) Glasgow, UK 2021. Available:
https://ukcop26.org/
[20] A. Shaikh, P. H. Shaikh, L. Kumar, N. H. Mirjat, Z. A. Memon, M. E. H. Assad, et al., "Design and Modeling of A Grid-Connected PV–WT Hybrid Microgrid System Using Net Metering Facility," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 46, pp. 1189-1205, 2022/12/01 2022. Available:
https://doi.org/10.1007/s40998-022-00530-4
[21] W. S. Ebhota and P. Y. Tabakov, "Power Supply and the Place Hydropower in sub-Saharan Africa’s Modern Energy System and Socioeconomic Wellbeing," International Journal of Energy Economics and Policy, vol. 9, pp. 347-363 2019. Available:
https://doi.org/10.32479/ijeep.7184
[22] W. S. Ebhota and T.-C. Jen, "Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 7, pp. 97-117, 2020/01/01 2020. Available:
https://doi.org/10.1007/s40684-019-00101-9
[23] W. S. Ebhota and T.-C. Jen, "Efficient Low-cost Materials for Solar energy applications: Roles of nanotechnology," in Photovoltaic Materials and Solar Panels, 1 ed United Kingdom: IntechOpen, 2018. Available:
https://www.intechopen.com/chapters/62207
[26] N. Saini, "Band gap engineering in Cu2ZnGexSn 1-xS4 thin film solar cells," PhD, Materials Science and Engineering, Solar Cell Technology, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2021.
[27] S. Grini, "Band gap grading and impurities in Cu2ZnSnS4 solar cells," Physics, University of Oslo, Oslo, Norway, 2019.
[29] W. S. Ebhota and T.-C. Jen, "Photovoltaic solar energy: potentials and outlooks," presented at the ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, 2018. Available:
http://dx.doi.org/10.1115/IMECE2018-86991
[30] NREL. (2022, 08/09/2022). Best Research-Cell Efficiency Chart.The National Renewable Energy Laboratory, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, USA. Available:
https://www.nrel.gov/pv/cell-efficiency.html
[37] K. Gkini, I. Martinaiou, and P. Falaras, "A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C3N4 Nanostructures," Materials, vol. 14, p. 1679, 2021. Available:
https://www.mdpi.com/1996-1944/14/7/1679
[38] M. H. Alaaeddin, S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, and F. M. AL-Oqla, "Development of Photovoltaic Module with Fabricated and Evaluated Novel Backsheet-Based Biocomposite Materials," Materials, vol. 12, p. 3007, 2019. Available:
https://www.mdpi.com/1996-1944/12/18/3007
[39] R. Verduci, A. Agresti, V. Romano, and G. D’Angelo, "Interface Engineering for Perovskite Solar Cells Based on 2D-Materials: A Physics Point of View," Materials, vol. 14, p. 5843, 2021. Available:
https://www.mdpi.com/1996-1944/14/19/5843
[40] R. Isci, M. Unal, T. Yesil, A. Ekici, B. Sütay, C. Zafer, et al., "Thieno[3,2-b]thiophene and triphenylamine-based hole transport materials for perovskite solar cells," Frontiers in Materials, vol. 10, 2023-April-12 2023. Available:
https://www.frontiersin.org/articles/10.3389/fmats.2023.1125462
[41] X. Lu, Z. Li, J. Zou, D. Peng, W. Hu, Y. Zhong, et al., "Spent lithium manganate batteries for sustainable recycling: A review," Frontiers in Materials, vol. 10, 2023-March-20 2023. Available:
https://www.frontiersin.org/articles/10.3389/fmats.2023.1152018
[42] Z. Ali, M. Ali, A. Mehmood, A. Ishfaq, M. A. Akram, A. Zeb, et al., "Nano-architectured cobalt selenide spheres anchored on graphene oxide sheets for sodium ion battery anode," Frontiers in Materials, vol. 9, 2022-August-29 2022. Available:
https://www.frontiersin.org/articles/10.3389/fmats.2022.950673
[43] C. Xin, K. Wen, S. Guan, C. Xue, X. Wu, L. Li, et al., "A Cross-Linked Poly(Ethylene Oxide)-Based Electrolyte for All-Solid-State Lithium Metal Batteries With Long Cycling Stability," Frontiers in Materials, vol. 9, 2022-April-11 2022. Available:
https://www.frontiersin.org/articles/10.3389/fmats.2022.864478
[46] J. Sang, Y. Li, J. Yang, T. Wu, L. Xiang, Y. Zhao, et al., "Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells," Cell Reports Physical Science, vol. 4, p. 101454, 2023/06/21/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S2666386423002333
[48] F. S. Hafez, B. Sa'di, M. Safa-Gamal, Y. H. Taufiq-Yap, M. Alrifaey, M. Seyedmahmoudian, et al., "Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research," Energy Strategy Reviews, vol. 45, p. 101013, 2023/01/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S2211467X22002073
[50] S. Mohtaram, W. Wu, H. Garcia Castellanos, Y. Aryanfar, M. K. Al Mesfer, M. Danish, et al., "Enhancing energy efficiency and sustainability in ejector expansion transcritical CO2 and lithium bromide water vapour absorption refrigeration systems," Thermal Science and Engineering Progress, vol. 43, p. 101983, 2023/08/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S2451904923003360
[55] A. T. Muzhanje, M. A. Hassan, A. Abd El-Moneim, and H. Hassan, "Preparation and physical and thermal characterizations of enhanced phase change materials with nanoparticles for energy storage applications," Journal of Molecular Liquids, p. 122958, 2023/08/29/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S0167732223017646
[58] S. S. Fetsov and N. A. Lutsenko, "A novel computational model and OpenFOAM solver for simulating thermal energy storages based on granular phase change materials: Advantages and applicability," Journal of Energy Storage, vol. 65, p. 107294, 2023/08/15/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S2352152X23006916
[61] S. Faryad, M. B. Tahir, B. S. Almutairi, M. Sagir, S. Nazir, B. Ahmed, et al., "The potential of MXenes-based nanomaterials towards high performance in energy production and storage applications," International Journal of Hydrogen Energy, 2023/06/14/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S0360319923024837
[63] H. Degirmenci, A. Uludag, S. Ekici, and T. Hikmet Karakoc, "Analyzing the hydrogen supply chain for airports: Evaluating environmental impact, cost, sustainability, viability, and safety in various scenarios for implementation," Energy Conversion and Management, vol. 293, p. 117537, 2023/10/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S019689042300883X
[64] B. F. Leo, M. Manimaran, N. P. Rumjit, and C. W. Lai, "Safety Aspects and Environmental Impacts of Nanomaterials in Energy Storing Devices," in Encyclopedia of Energy Storage, L. F. Cabeza, Ed., ed Oxford: Elsevier, 2022, pp. 656-666. Available:
https://www.sciencedirect.com/science/article/pii/B9780128197233000469
[66] M. M. S. Al-Azawii, S. F. H. Alhamdi, S. Braun, J.-F. Hoffmann, N. Calvet, and R. Anderson, "Thermocline in packed bed thermal energy storage during charge-discharge cycle using recycled ceramic materials - Commercial scale designs at high temperature," Journal of Energy Storage, vol. 64, p. 107209, 2023/08/01/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S2352152X23006060
[67] S. Cui, R. A. Kishore, P. Kolari, Q. Zheng, S. Kaur, J. Vidal, et al., "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, vol. 265, p. 126339, 2023/02/15/ 2023. Available:
https://www.sciencedirect.com/science/article/pii/S036054422203225X
[69] C. R. Thomas, S. George, A. M. Horst, Z. Ji, R. J. Miller, J. R. Peralta-Videa, et al., "Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms," ACS Nano, vol. 5, pp. 13-20, 2011/01/25 2011. Available:
https://doi.org/10.1021/nn1034857
[73] P. V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," The Journal of Physical Chemistry C, vol. 112, pp. 18737-18753, 2008/12/04 2008. Available:
https://doi.org/10.1021/jp806791s
[74] J. A. Mikroyannidis, G. D. Sharma, S. S. Sharma, and Y. K. Vijay, "Novel Low Band Gap Phenylenevinylene Copolymer with BF2−Azopyrrole Complex Units: Synthesis and Use for Efficient Bulk Heterojunction Solar Cells," The Journal of Physical Chemistry C, vol. 114, pp. 1520-1527, 2010/01/28 2010. Available:
https://doi.org/10.1021/jp910467c
[75] A. Y. Saunina, M. A. Zvaigzne, A. E. Aleksandrov, A. A. Chistyakov, V. R. Nikitenko, A. R. Tameev, et al., "PbS Quantum Dots with Inorganic Ligands: Physical Modeling of the Charge and Excitation Transport in Photovoltaic Cells," The Journal of Physical Chemistry C, vol. 125, pp. 6020-6025, 2021/03/25 2021. Available:
https://doi.org/10.1021/acs.jpcc.0c10392
[76] Z. Ding, J. Kettle, M. Horie, S. W. Chang, G. C. Smith, A. I. Shames, et al., "Efficient solar cells are more stable: the impact of polymer molecular weight on performance of organic photovoltaics," Journal of Materials Chemistry A, vol. 4, pp. 7274-7280, 2016. Available:
http://dx.doi.org/10.1039/C6TA00721J
[78] X. Hou, Y. Wang, H. K. H. Lee, R. Datt, N. Uslar Miano, D. Yan, et al., "Indoor application of emerging photovoltaics—progress, challenges and perspectives," Journal of Materials Chemistry A, vol. 8, pp. 21503-21525, 2020. Available:
http://dx.doi.org/10.1039/D0TA06950G
[79] S. Mishra, S. Ghosh, B. Boro, D. Kumar, S. Porwal, M. Paul, et al., "Solution-processed next generation thin film solar cells for indoor light applications," Energy Advances, vol. 1, pp. 761-792, 2022. Available:
http://dx.doi.org/10.1039/D2YA00075J
[80] E. K. Solak and E. Irmak, "Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance," RSC Advances, vol. 13, pp. 12244-12269, 2023. Available:
http://dx.doi.org/10.1039/D3RA01454A
[81] V. Vohra, "Natural Dyes and Their Derivatives Integrated into Organic Solar Cells," Materials (Basel), vol. 11, Dec 18 2018.
[84] E. R. Rwenyagila, "A Review of Organic Photovoltaic Energy Source and Its Technological Designs," International Journal of Photoenergy, vol. 2017, p. 1656512, 2017/10/29 2017. Available:
https://doi.org/10.1155/2017/1656512
[85] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, et al., "Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells," Nature Communications, vol. 5, p. 5293, 2014/11/10 2014. Available:
https://doi.org/10.1038/ncomms6293
[86] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, pp. 1234-1237, 2015. Available:
https://www.science.org/doi/abs/10.1126/science.aaa9272
[87] L. W. T. NG, S. W. Lee, D. W. Chang, J. M. Hodgkiss, and D. Vak, "Organic Photovoltaics’ New Renaissance: Advances Toward Roll-to-Roll Manufacturing of Non-Fullerene Acceptor Organic Photovoltaics," Advanced Materials Technologies, vol. n/a, pp. 1-31, 2022. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202101556
[89] Z.-W. Chiu, Y.-J. Hsiao, T.-H. Fang, and L.-W. Ji, "Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method," International Journal of Photoenergy, vol. 2014, p. 861587, 2014/08/04 2014. Available:
https://doi.org/10.1155/2014/861587
[91] Z. Liu, W. Ma, and X. Ye, "Chapter 2 - Shape control in the synthesis of colloidal semiconductor nanocrystals," in Anisotropic Particle Assemblies, N. Wu, D. Lee, and A. Striolo, Eds., ed Amsterdam: Elsevier, 2018, pp. 37-54. Available:
https://www.sciencedirect.com/science/article/pii/B9780128040690000022
[92] H. Zhong, T. Mirkovic, and G. D. Scholes, "5.06 - Nanocrystal Synthesis," in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht, Eds., ed Amsterdam: Academic Press, 2011, pp. 153-201. Available:
https://www.sciencedirect.com/science/article/pii/B9780123743961000519
[93] S. M. Haque, J. A. Ardila-Rey, Y. Umar, H. Rahman, A. A. Mas’ud, F. Muhammad-Sukki, et al., "Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power," Polymers, vol. 10, p. 307, 2018. Available:
https://www.mdpi.com/2073-4360/10/3/307
[94] H. Wang, Q. Liu, D. Liu, R. Su, J. Liu, and Y. Li, "Computational Prediction of Electronic and Photovoltaic Properties of Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells," International Journal of Photoenergy, vol. 2018, p. 4764830, 2018/08/01 2018. Available:
https://doi.org/10.1155/2018/4764830
[95] H. Soonmin, Hardani, P. Nandi, B. S. Mwankemwa, T. D. Malevu, and M. I. Malik, "Overview on Different Types of Solar Cells: An Update," Applied Sciences, vol. 13, p. 2051, 2023. Available:
https://www.mdpi.com/2076-3417/13/4/2051
[96] I. Burgués-Ceballos, L. Lucera, P. Tiwana, K. Ocytko, L. W. Tan, S. Kowalski, et al., "Transparent organic photovoltaics: A strategic niche to advance commercialization," Joule, vol. 5, pp. 2261-2272, 2021/09/15/ 2021. Available:
https://www.sciencedirect.com/science/article/pii/S2542435121003160
[97] S. A. Gevorgyan, M. V. Madsen, B. Roth, M. Corazza, M. Hösel, R. R. Søndergaard, et al., "Lifetime of Organic Photovoltaics: Status and Predictions," Advanced Energy Materials, vol. 6, p. 1501208, 2016. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201501208
[101] S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, et al., "Definition of encapsulation barrier requirements: A method applied to organic solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. S65-S69, 2011/05/01/ 2011. Available:
https://www.sciencedirect.com/science/article/pii/S0927024811000493
[103] J. Gan, M. Yu, R. L. Z. Hoye, K. P. Musselman, Y. Li, X. Liu, et al., "Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics," Materials Today Nano, vol. 13, p. 100101, 2021/03/01/ 2021. Available:
https://www.sciencedirect.com/science/article/pii/S2588842020300304
[104] J. Jean, J. Xiao, R. Nick, N. Moody, M. Nasilowski, M. Bawendi, et al., "Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics," Energy & Environmental Science, vol. 11, pp. 2295-2305, 2018. Available:
http://dx.doi.org/10.1039/C8EE01348A
[105] K. Y. Mitra, C. Zeiner, P. Köder, J. Müller, E. Lotter, A. Willert, et al., "Development of a P1-filling process to increase the cell performance in the copper indium gallium Selenide photovoltaics by implementation of the inkjet technology," Micro and Nano Engineering, vol. 16, p. 100152, 2022/08/01/ 2022. Available:
https://www.sciencedirect.com/science/article/pii/S2590007222000491
[107] M. Hussein, A. H. K. Mahmoud, H. Abdelhamid, S. S. A. Obayya, and M. F. O. Hameed, "Electrical characteristics of modified truncated cone nanowire for efficient light trapping," Photonics and Nanostructures - Fundamentals and Applications, vol. 38, p. 100761, 2020/02/01/ 2020. Available:
https://www.sciencedirect.com/science/article/pii/S1569441019300707
[108] R. A. Ganeev, I. A. Shuklov, A. I. Zvyagin, A. Mardini, A. A. Lizunova, G. S. Boltaev, et al., "Optical nonlinearities of mercury telluride quantum dots measured by nanosecond pulses," Photonics and Nanostructures - Fundamentals and Applications, vol. 50, p. 101025, 2022/07/01/ 2022. Available:
https://www.sciencedirect.com/science/article/pii/S1569441022000359
[109] X. Hu, C. Zhu, W. Zhang, H. Wang, J. Wang, F. Ren, et al., "Strain release of formamidinium-cesium perovskite with imprint-assisted organic ammonium halide compensation for efficient and stable solar cells," Nano Energy, vol. 101, p. 107594, 2022/10/01/ 2022. Available:
https://www.sciencedirect.com/science/article/pii/S2211285522006723
[110] P. Wang, B. Chen, R. Li, S. Wang, Y. Li, X. Du, et al., "2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%," Nano Energy, vol. 94, p. 106914, 2022/04/01/ 2022. Available:
https://www.sciencedirect.com/science/article/pii/S2211285521011630
[111] X. Wang, Y. Qiu, L. Wang, T. Zhang, L. Zhu, T. Shan, et al., "Organic nanocrystals induced surface passivation towards high-efficiency and stable perovskite solar cells," Nano Energy, vol. 89, p. 106445, 2021/11/01/ 2021. Available:
https://www.sciencedirect.com/science/article/pii/S221128552100700X
[112] M. F. Abdelbar, M. Abdelhameed, M. Esmat, M. El-Kemary, and N. Fukata, "Energy management in hybrid organic-silicon nanostructured solar cells by downshifting using CdZnS/ZnS and CdZnSe/ZnS quantum dots," Nano Energy, vol. 89, p. 106470, 2021/11/01/ 2021. Available:
https://www.sciencedirect.com/science/article/pii/S2211285521007254
[114] E. Musazade, R. Voloshin, N. Brady, J. Mondal, S. Atashova, S. K. Zharmukhamedov, et al., "Biohybrid solar cells: Fundamentals, progress, and challenges," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 35, pp. 134-156, 2018/06/01/ 2018. Available:
https://www.sciencedirect.com/science/article/pii/S1389556718300030