Document Type : Original Article

Authors

Department of Mechanical Engineering, Institute for Systems Science, Durban University of Technology, Durban, South Africa.

Abstract

This research provides concise insights into fossil fuel consumption challenges, and the factors contributing to global warming, and evaluates the significance of photovoltaic (PV) materials in achieving net-zero-CO2 emissions. The article categorizes constraints in the development of PV cells into four main areas: technical factors, leadership impact, political instability, and financial aspects. Primarily, the study delves into technical factors, focusing on the power conversion efficiency (PCE) and power density of PV cells. Theoretically, approximately 67% of solar energy is dissipated in various forms - 47% as heat, 18% as photons, and 2% in local combination loss. Commercially available mono-crystalline silicon (c-Si) and poly-crystalline silicon (poly-c-Si) PV cells typically demonstrate a range of PCEs between 15% to 22% and 13% to 18%, respectively, presenting an efficiency considerably lower than the potential maximum of 100%. The study highlights organic photovoltaic cells (OPVs) as promising third-generation PV modules due to their relatively high power conversion efficiency (HPCE) and eco-friendly attributes. However, their commercial feasibility is under scrutiny owing to constraints such as a limited lifespan, high production costs, and challenges in mass production. Ongoing research and development (R&D) in PV cell technologies aim to enhance PCE and power density, establish cost-effective production methods, and create more reliable and sustainable supply chains. Additionally, the study explores the role of nanotechnology in developing high-power conversion efficiency cells, identifies research gaps and priorities in engineered organic material PV cells, and discusses the potential of OPVs in the R&D of high-efficiency, cost-effective, and environmentally friendly PV cells.

Keywords

Main Subjects

[1]           O. K. Simya, P. Radhakrishnan, and A. Ashok, "Engineered Nanomaterials for Energy Applications," in Handbook of Nanomaterials for Industrial Applications, C. Mustansar Hussain, Ed., ed: Elsevier, 2018, pp. 751-767. Available: https://www.sciencedirect.com/science/article/pii/B9780128133514000432
[2]           Energy.gov. (2023). Crystalline Silicon Photovoltaics Research, Energy Efficiency & Renewable Energy, Washington, DC Available: https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research
[3]           Z. Xu, X. Xu, C. Cui, and H. Huang, "A new uniformity coefficient parameter for the quantitative characterization of a textured wafer surface and its relationship with the photovoltaic conversion efficiency of monocrystalline silicon cells," Solar Energy, vol. 191, pp. 210-218, 2019/10/01/ 2019. Available: https://www.sciencedirect.com/science/article/pii/S0038092X19308096
[4]           G. Giacosa and T. R. Walker, "A policy perspective on Nova Scotia's plans to reduce dependency on fossil fuels for electricity generation and improve air quality," Cleaner Production Letters, vol. 3, p. 100017, 2022/12/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S266679162200015X
[5]           C. McDonnell, A. Rempel, and J. Gupta, "Climate action or distraction? Exploring investor initiatives and implications for unextractable fossil fuels," Energy Research & Social Science, vol. 92, p. 102769, 2022/10/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S2214629622002729
[6]           A. A. Romanov, D. Oettl, B. A. Gusev, A. N. Tamarovskaya, J. M. Lopez-Cepero, E. V. Leonenko, et al., "Environmental efficiency of the fossil fuels to electricity transition in Eastern Siberia cities," Atmospheric Pollution Research, vol. 14, p. 101672, 2023/02/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S1309104223000260
[7]           J. P. Tilsted, F. Bauer, C. Deere Birkbeck, J. Skovgaard, and J. Rootzén, "Ending fossil-based growth: Confronting the political economy of petrochemical plastics," One Earth, vol. 6, pp. 607-619, 2023/06/16/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S259033222300252X
[8]           W. S. Ebhota, "Power accessibility, fossil fuel and the exploitation of small hydropower technology in sub-Saharan Africa," International Journal of Sustainable Energy Planning and Management  vol. 19, 2019. Available: https://doi.org/10.5278/ijsepm.2019.19.3
[9]           W. S. Ebhota, "Photovoltaic Solar Scheme in Sub Saharan Africa: Socioeconomic Booster " International Journal of Mechanical Engineering and Technology vol. 10, pp. 28-42, 2019. Available: http://www.iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_10_ISSUE_10/IJMET_10_10_003.pdf
[10]         A. Blokhin. (2022, 30/07/2022). The Five Countries that Produce the Most Carbon Dioxide (CO2). Available: https://www.investopedia.com/articles/investing/092915/5-countries-produce-most-carbon-dioxide-co2.asp
[11]         S. Duan, Z. Qiu, Z. Liu, and L. Liu, "Impact assessment of vehicle electrification pathways on emissions of CO2 and air pollution in Xi'an, China," Science of The Total Environment, vol. 893, p. 164856, 2023/10/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0048969723034794
[12]         M. Shabbir Alam, P. Duraisamy, A. Bakkar Siddik, M. Murshed, H. Mahmood, M. Palanisamy, et al., "The impacts of globalization, renewable energy, and agriculture on CO2 emissions in India: Contextual evidence using a novel composite carbon emission-related atmospheric quality index," Gondwana Research, vol. 119, pp. 384-401, 2023/07/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S1342937X2300117X
[13]         Z. Sun, X. Wang, L. Duan, and Z. Sun, "Deoxygenation-based CO2 mitigation: State-of-the-art, challenges, and prospects," Current Opinion in Green and Sustainable Chemistry, vol. 40, p. 100758, 2023/04/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S245222362300007X
[14]         R. di Filippo, O. S. Bursi, and R. di Maggio, "Global warming and ozone depletion potentials caused by emissions from HFC and CFC banks due to structural damage," Energy and Buildings, vol. 273, p. 112385, 2022/10/15/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S0378778822005564
[15]         Y. Wang, X. Yan, and Z. Wang, "Global warming caused by afforestation in the Southern Hemisphere," Ecological Indicators, vol. 52, pp. 371-378, 2015/05/01/ 2015. Available: https://www.sciencedirect.com/science/article/pii/S1470160X1400572X
[16]         IPCC. (2018, 09/12/2019). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland.
[17]         UN, "Glasgow COP26: Uniting the world to tackle climate change," presented at the 26th The United Nations (UN) Climate Change Conference of the Parties (COP26) Glasgow, UK 2021. Available: https://ukcop26.org/
[18]         M. A. Rosen, "Chapter 2 - Renewable energy and energy sustainability," in Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad and M. A. Rosen, Eds., ed: Academic Press, 2021, pp. 17-31. Available: https://www.sciencedirect.com/science/article/pii/B978012821602600002X
[19]         T. J. Eiden, "Nuclear Energy: The Safe, Clean, Cost-Effective Alternative," The Objective Standard, Fall 2013 vol. 8, 2014 Available: https://theobjectivestandard.com/2013/08/nuclear-energy-safe-clean-cost-effective/
[20]         A. Shaikh, P. H. Shaikh, L. Kumar, N. H. Mirjat, Z. A. Memon, M. E. H. Assad, et al., "Design and Modeling of A Grid-Connected PV–WT Hybrid Microgrid System Using Net Metering Facility," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 46, pp. 1189-1205, 2022/12/01 2022. Available: https://doi.org/10.1007/s40998-022-00530-4
[21]         W. S. Ebhota and P. Y. Tabakov, "Power Supply and the Place Hydropower in sub-Saharan Africa’s Modern Energy System and Socioeconomic Wellbeing," International Journal of Energy Economics and Policy, vol. 9, pp. 347-363 2019. Available: https://doi.org/10.32479/ijeep.7184
[22]         W. S. Ebhota and T.-C. Jen, "Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 7, pp. 97-117, 2020/01/01 2020. Available: https://doi.org/10.1007/s40684-019-00101-9
[23]         W. S. Ebhota and T.-C. Jen, "Efficient Low-cost Materials for Solar energy applications: Roles of nanotechnology," in Photovoltaic Materials and Solar Panels, 1 ed United Kingdom: IntechOpen, 2018. Available: https://www.intechopen.com/chapters/62207
[24]         M. Grätzel, "Photoelectrochemical Cells," Nature, vol. 414, p. 338, 11/15/online 2001. Available: http://dx.doi.org/10.1038/35104607
[25]         M. Edoff, "Thin film solar cells: research in an industrial perspective," Ambio, vol. 41 Suppl 2, pp. 112-8, 2012. Available: https://doi.org/10.1007/s13280-012-0265-6
[26]         N. Saini, "Band gap engineering in Cu2ZnGexSn 1-xS4 thin film solar cells," PhD, Materials Science and Engineering, Solar Cell Technology, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2021.
[27]         S. Grini, "Band gap grading and impurities in Cu2ZnSnS4 solar cells," Physics, University of Oslo, Oslo, Norway, 2019.
[28]         V. S. Murthy. (2022, 06/10/2022). Third Generation Solar Cells: An Overview.Frost & Sullivan, Malaysia. Available: http://www.growthconsulting.frost.com/web/images.nsf/0/5C8C038AEE4690D96525744E001A9C9B/$File/TI.htm
[29]         W. S. Ebhota and T.-C. Jen, "Photovoltaic solar energy: potentials and outlooks," presented at the ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, 2018. Available: http://dx.doi.org/10.1115/IMECE2018-86991
[30]         NREL. (2022, 08/09/2022). Best Research-Cell Efficiency Chart.The National Renewable Energy Laboratory,  the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, USA. Available: https://www.nrel.gov/pv/cell-efficiency.html
[31]         "Basic Characteristics and Characterization of Solar Cells," in Materials Concepts for Solar Cells, ed, pp. 3-43. Available: https://www.worldscientific.com/doi/abs/10.1142/9781786344496_0001
[32]         S. McFadyen. (2013, 05/09/2023). Photovoltaic (PV) - Electrical Calculations Available: https://myelectrical.com/notes/entryid/225/photovoltaic-pv-electrical-calculations
[33]         M. A. Green, "Solar cell fill factors: General graph and empirical expressions," Solid-State Electronics, vol. 24, pp. 788-789, 1981/08/01/ 1981. Available: https://www.sciencedirect.com/science/article/pii/0038110181900629
[34]         G. Fonthal, L. Tirado-Mejı́a, J. I. Marı́n-Hurtado, H. Ariza-Calderón, and J. G. Mendoza-Alvarez, "Temperature dependence of the band gap energy of crystalline CdTe," Journal of Physics and Chemistry of Solids, vol. 61, pp. 579-583, 2000/04/01/ 2000. Available: https://www.sciencedirect.com/science/article/pii/S0022369799002541
[35]         S. Ray and K. Tarafder, "Validation of ZnTe as back surface field layer for CdTe solar cells: A combined experimental and theoretical study," Materials Science and Engineering: B, vol. 295, p. 116548, 2023/09/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0921510723002908
[36]         B. R. Sutherland, "Solar Materials Find Their Band Gap," Joule, vol. 4, pp. 984-985, 2020/05/20/ 2020. Available: https://www.sciencedirect.com/science/article/pii/S2542435120301847
[37]         K. Gkini, I. Martinaiou, and P. Falaras, "A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C3N4 Nanostructures," Materials, vol. 14, p. 1679, 2021. Available: https://www.mdpi.com/1996-1944/14/7/1679
[38]         M. H. Alaaeddin, S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, and F. M. AL-Oqla, "Development of Photovoltaic Module with Fabricated and Evaluated Novel Backsheet-Based Biocomposite Materials," Materials, vol. 12, p. 3007, 2019. Available: https://www.mdpi.com/1996-1944/12/18/3007
[39]         R. Verduci, A. Agresti, V. Romano, and G. D’Angelo, "Interface Engineering for Perovskite Solar Cells Based on 2D-Materials: A Physics Point of View," Materials, vol. 14, p. 5843, 2021. Available: https://www.mdpi.com/1996-1944/14/19/5843
[40]         R. Isci, M. Unal, T. Yesil, A. Ekici, B. Sütay, C. Zafer, et al., "Thieno[3,2-b]thiophene and triphenylamine-based hole transport materials for perovskite solar cells," Frontiers in Materials, vol. 10, 2023-April-12 2023. Available: https://www.frontiersin.org/articles/10.3389/fmats.2023.1125462
[41]         X. Lu, Z. Li, J. Zou, D. Peng, W. Hu, Y. Zhong, et al., "Spent lithium manganate batteries for sustainable recycling: A review," Frontiers in Materials, vol. 10, 2023-March-20 2023. Available: https://www.frontiersin.org/articles/10.3389/fmats.2023.1152018
[42]         Z. Ali, M. Ali, A. Mehmood, A. Ishfaq, M. A. Akram, A. Zeb, et al., "Nano-architectured cobalt selenide spheres anchored on graphene oxide sheets for sodium ion battery anode," Frontiers in Materials, vol. 9, 2022-August-29 2022. Available: https://www.frontiersin.org/articles/10.3389/fmats.2022.950673
[43]         C. Xin, K. Wen, S. Guan, C. Xue, X. Wu, L. Li, et al., "A Cross-Linked Poly(Ethylene Oxide)-Based Electrolyte for All-Solid-State Lithium Metal Batteries With Long Cycling Stability," Frontiers in Materials, vol. 9, 2022-April-11 2022. Available: https://www.frontiersin.org/articles/10.3389/fmats.2022.864478
[44]         R. Baena Mejías, C. A. Saias, I. Roumeliotis, V. Pachidis, and M. Bacic, "Assessment of hydrogen gas turbine-fuel cell powerplant for rotorcraft," International Journal of Hydrogen Energy, 2023/08/17/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0360319923034924
[45]         S. Mohammad Saadat, M. Sharma, M. Agarwal, and M. Tiwari, "Incorporation of fuel cell in oil refinery a step to achieve net zero-carbon emission goal," Materials Today: Proceedings, 2023/06/12/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2214785323030699
[46]         J. Sang, Y. Li, J. Yang, T. Wu, L. Xiang, Y. Zhao, et al., "Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells," Cell Reports Physical Science, vol. 4, p. 101454, 2023/06/21/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2666386423002333
[47]         A. H. Tariq, S. A. A. Kazmi, M. Hassan, S. A. Muhammed Ali, and M. Anwar, "Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review," International Journal of Hydrogen Energy, 2023/08/09/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S036031992303745X
[48]         F. S. Hafez, B. Sa'di, M. Safa-Gamal, Y. H. Taufiq-Yap, M. Alrifaey, M. Seyedmahmoudian, et al., "Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research," Energy Strategy Reviews, vol. 45, p. 101013, 2023/01/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2211467X22002073
[49]         Y. Khan, F. Liu, and T. Hassan, "Natural resources and sustainable development: Evaluating the role of remittances and energy resources efficiency," Resources Policy, vol. 80, p. 103214, 2023/01/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0301420722006572
[50]         S. Mohtaram, W. Wu, H. Garcia Castellanos, Y. Aryanfar, M. K. Al Mesfer, M. Danish, et al., "Enhancing energy efficiency and sustainability in ejector expansion transcritical CO2 and lithium bromide water vapour absorption refrigeration systems," Thermal Science and Engineering Progress, vol. 43, p. 101983, 2023/08/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2451904923003360
[51]         R. H. Althomali and W. A. Adeosun, "Wet chemically synthesized metal oxides nanoparticles, characterization and application in electrochemical energy storage: An updated review," Synthetic Metals, vol. 298, p. 117424, 2023/09/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0379677923001467
[52]         D. H. Barrett and C. B. Rodella, "Developments in operando and in-situ characterisation of energy storage materials using synchrotron radiation," Current Opinion in Electrochemistry, vol. 38, p. 101242, 2023/04/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2451910323000352
[53]         V. Chinnasamy, J. Heo, H. Lee, Y. Jeon, and H. Cho, "Fabrication and thermophysical characterization of microencapsulated stearyl alcohol as thermal energy storage material," Alexandria Engineering Journal, vol. 71, pp. 645-658, 2023/05/15/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S1110016823002533
[54]         A. Kushima and Z. Mohayman, "Advanced Energy Materials Characterization: In Situ/Operando Techniques," in Encyclopedia of Materials: Electronics, A. S. M. A. Haseeb, Ed., ed Oxford: Academic Press, 2023, pp. 323-348. Available: https://www.sciencedirect.com/science/article/pii/B9780128197288000760
[55]         A. T. Muzhanje, M. A. Hassan, A. Abd El-Moneim, and H. Hassan, "Preparation and physical and thermal characterizations of enhanced phase change materials with nanoparticles for energy storage applications," Journal of Molecular Liquids, p. 122958, 2023/08/29/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0167732223017646
[56]         H. Demir, H. Daglar, H. C. Gulbalkan, G. O. Aksu, and S. Keskin, "Recent advances in computational modeling of MOFs: From molecular simulations to machine learning," Coordination Chemistry Reviews, vol. 484, p. 215112, 2023/06/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0010854523001017
[57]         X. Du, H. Mutsuda, Y. Wasada, and T. Nakashima, "Hybrid simulation of dissipative particle dynamics and computational fluid dynamics for friction drag reduction of polymer coatings," Ocean Engineering, vol. 285, p. 115415, 2023/10/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0029801823017997
[58]         S. S. Fetsov and N. A. Lutsenko, "A novel computational model and OpenFOAM solver for simulating thermal energy storages based on granular phase change materials: Advantages and applicability," Journal of Energy Storage, vol. 65, p. 107294, 2023/08/15/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2352152X23006916
[59]         J. M. Ramírez, F. Castañon, and J. Espeche, "A computational method for modeling the multi-physical interactions of electromagnetic wind energy harvesters in tandem arrangement," Extreme Mechanics Letters, vol. 61, p. 102028, 2023/06/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2352431623000743
[60]         G. Chakraborty, R. Padmashree, and A. Prasad, "Recent advancement of surface modification techniques of 2-D nanomaterials," Materials Science and Engineering: B, vol. 297, p. 116817, 2023/11/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0921510723005597
[61]         S. Faryad, M. B. Tahir, B. S. Almutairi, M. Sagir, S. Nazir, B. Ahmed, et al., "The potential of MXenes-based nanomaterials towards high performance in energy production and storage applications," International Journal of Hydrogen Energy, 2023/06/14/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S0360319923024837
[62]         S. Sinha, H. Kim, and A. W. Robertson, "Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications," Materials Today Advances, vol. 12, p. 100169, 2021/12/01/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S2590049821000394
[63]         H. Degirmenci, A. Uludag, S. Ekici, and T. Hikmet Karakoc, "Analyzing the hydrogen supply chain for airports: Evaluating environmental impact, cost, sustainability, viability, and safety in various scenarios for implementation," Energy Conversion and Management, vol. 293, p. 117537, 2023/10/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S019689042300883X
[64]         B. F. Leo, M. Manimaran, N. P. Rumjit, and C. W. Lai, "Safety Aspects and Environmental Impacts of Nanomaterials in Energy Storing Devices," in Encyclopedia of Energy Storage, L. F. Cabeza, Ed., ed Oxford: Elsevier, 2022, pp. 656-666. Available: https://www.sciencedirect.com/science/article/pii/B9780128197233000469
[65]         L. Zajicek, M. Drapalik, I. Kral, and W. Liebert, "Energy efficiency and environmental impacts of horizontal small wind turbines in Austria," Sustainable Energy Technologies and Assessments, vol. 59, p. 103411, 2023/10/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2213138823004046
[66]         M. M. S. Al-Azawii, S. F. H. Alhamdi, S. Braun, J.-F. Hoffmann, N. Calvet, and R. Anderson, "Thermocline in packed bed thermal energy storage during charge-discharge cycle using recycled ceramic materials - Commercial scale designs at high temperature," Journal of Energy Storage, vol. 64, p. 107209, 2023/08/01/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S2352152X23006060
[67]         S. Cui, R. A. Kishore, P. Kolari, Q. Zheng, S. Kaur, J. Vidal, et al., "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, vol. 265, p. 126339, 2023/02/15/ 2023. Available: https://www.sciencedirect.com/science/article/pii/S036054422203225X
[68]         B. Kocak and H. Paksoy, "Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications," Solar Energy, vol. 211, pp. 1335-1346, 2020/11/15/ 2020. Available: https://www.sciencedirect.com/science/article/pii/S0038092X20311294
[69]         C. R. Thomas, S. George, A. M. Horst, Z. Ji, R. J. Miller, J. R. Peralta-Videa, et al., "Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms," ACS Nano, vol. 5, pp. 13-20, 2011/01/25 2011. Available: https://doi.org/10.1021/nn1034857
[70]         S. S. Manaktala and K. M. Singh, "Nanotechnology for Energy Applications," Journal of Electrical & Electronics Engineering, vol. 7, pp. 63-69, 2016. Available: https://www.researchgate.net/publication/319178798
[71]         W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961. Available: https://aip.scitation.org/doi/abs/10.1063/1.1736034
[72]         FourPeaks. (2022, 08/10/2022). SolarEfficiency Limit.Four Peaks Technologies. Available: http://solarcellcentral.com/limits_page.html#
[73]         P. V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," The Journal of Physical Chemistry C, vol. 112, pp. 18737-18753, 2008/12/04 2008. Available: https://doi.org/10.1021/jp806791s
[74]         J. A. Mikroyannidis, G. D. Sharma, S. S. Sharma, and Y. K. Vijay, "Novel Low Band Gap Phenylenevinylene Copolymer with BF2−Azopyrrole Complex Units: Synthesis and Use for Efficient Bulk Heterojunction Solar Cells," The Journal of Physical Chemistry C, vol. 114, pp. 1520-1527, 2010/01/28 2010. Available: https://doi.org/10.1021/jp910467c
[75]         A. Y. Saunina, M. A. Zvaigzne, A. E. Aleksandrov, A. A. Chistyakov, V. R. Nikitenko, A. R. Tameev, et al., "PbS Quantum Dots with Inorganic Ligands: Physical Modeling of the Charge and Excitation Transport in Photovoltaic Cells," The Journal of Physical Chemistry C, vol. 125, pp. 6020-6025, 2021/03/25 2021. Available: https://doi.org/10.1021/acs.jpcc.0c10392
[76]         Z. Ding, J. Kettle, M. Horie, S. W. Chang, G. C. Smith, A. I. Shames, et al., "Efficient solar cells are more stable: the impact of polymer molecular weight on performance of organic photovoltaics," Journal of Materials Chemistry A, vol. 4, pp. 7274-7280, 2016. Available: http://dx.doi.org/10.1039/C6TA00721J
[77]         NREL, "Photovoltaic Research: Organic Photovoltaic Solar Cells ", The National Renewable Energy Laboratory (NREL), U.S. Department of Energy02/09/2023 2023. Available: https://www.nrel.gov/pv/organic-photovoltaic-solar-cells.html
[78]         X. Hou, Y. Wang, H. K. H. Lee, R. Datt, N. Uslar Miano, D. Yan, et al., "Indoor application of emerging photovoltaics—progress, challenges and perspectives," Journal of Materials Chemistry A, vol. 8, pp. 21503-21525, 2020. Available: http://dx.doi.org/10.1039/D0TA06950G
[79]         S. Mishra, S. Ghosh, B. Boro, D. Kumar, S. Porwal, M. Paul, et al., "Solution-processed next generation thin film solar cells for indoor light applications," Energy Advances, vol. 1, pp. 761-792, 2022. Available: http://dx.doi.org/10.1039/D2YA00075J
[80]         E. K. Solak and E. Irmak, "Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance," RSC Advances, vol. 13, pp. 12244-12269, 2023. Available: http://dx.doi.org/10.1039/D3RA01454A
[81]         V. Vohra, "Natural Dyes and Their Derivatives Integrated into Organic Solar Cells," Materials (Basel), vol. 11, Dec 18 2018.
[82]         H. Hug, M. Bader, P. Mair, and T. Glatzel, "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, vol. 115, pp. 216-225, 2014/02/15/ 2014. Available: https://www.sciencedirect.com/science/article/pii/S0306261913008854
[83]         K. Uehara, K. Takagishi, and M. Tanaka, "The Al/Indigo/Au photovoltaic cell," Solar Cells, vol. 22, pp. 295-301, 1987/12/01/ 1987. Available: https://www.sciencedirect.com/science/article/pii/0379678787900597
[84]         E. R. Rwenyagila, "A Review of Organic Photovoltaic Energy Source and Its Technological Designs," International Journal of Photoenergy, vol. 2017, p. 1656512, 2017/10/29 2017. Available: https://doi.org/10.1155/2017/1656512
[85]         Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, et al., "Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells," Nature Communications, vol. 5, p. 5293, 2014/11/10 2014. Available: https://doi.org/10.1038/ncomms6293
[86]         W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, pp. 1234-1237, 2015. Available: https://www.science.org/doi/abs/10.1126/science.aaa9272
[87]         L. W. T. NG, S. W. Lee, D. W. Chang, J. M. Hodgkiss, and D. Vak, "Organic Photovoltaics’ New Renaissance: Advances Toward Roll-to-Roll Manufacturing of Non-Fullerene Acceptor Organic Photovoltaics," Advanced Materials Technologies, vol. n/a, pp. 1-31, 2022. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202101556
[88]         M. Hösel, D. Angmo, and F. C. Krebs, "17 - Organic solar cells (OSCs)," in Handbook of Organic Materials for Optical and (Opto)electronic Devices, O. Ostroverkhova, Ed., ed: Woodhead Publishing, 2013, pp. 473-507. Available: https://www.sciencedirect.com/science/article/pii/B978085709265650017X
[89]         Z.-W. Chiu, Y.-J. Hsiao, T.-H. Fang, and L.-W. Ji, "Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method," International Journal of Photoenergy, vol. 2014, p. 861587, 2014/08/04 2014. Available: https://doi.org/10.1155/2014/861587
[90]         Aldrich. (2003, 09/09/2022). To review a complete list of semiconducting polymers and oligomers: Organic Semiconductors for Advanced Electronics..Sigma-Aldrich Fine Chemicals, ChemFiles Vol. 4 No. 6, USA. Available: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/719/405/al_chemfile_v4_no6.pdf
[91]         Z. Liu, W. Ma, and X. Ye, "Chapter 2 - Shape control in the synthesis of colloidal semiconductor nanocrystals," in Anisotropic Particle Assemblies, N. Wu, D. Lee, and A. Striolo, Eds., ed Amsterdam: Elsevier, 2018, pp. 37-54. Available: https://www.sciencedirect.com/science/article/pii/B9780128040690000022
[92]         H. Zhong, T. Mirkovic, and G. D. Scholes, "5.06 - Nanocrystal Synthesis," in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht, Eds., ed Amsterdam: Academic Press, 2011, pp. 153-201. Available: https://www.sciencedirect.com/science/article/pii/B9780123743961000519
[93]         S. M. Haque, J. A. Ardila-Rey, Y. Umar, H. Rahman, A. A. Mas’ud, F. Muhammad-Sukki, et al., "Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power," Polymers, vol. 10, p. 307, 2018. Available: https://www.mdpi.com/2073-4360/10/3/307
[94]         H. Wang, Q. Liu, D. Liu, R. Su, J. Liu, and Y. Li, "Computational Prediction of Electronic and Photovoltaic Properties of Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells," International Journal of Photoenergy, vol. 2018, p. 4764830, 2018/08/01 2018. Available: https://doi.org/10.1155/2018/4764830
[95]         H. Soonmin, Hardani, P. Nandi, B. S. Mwankemwa, T. D. Malevu, and M. I. Malik, "Overview on Different Types of Solar Cells: An Update," Applied Sciences, vol. 13, p. 2051, 2023. Available: https://www.mdpi.com/2076-3417/13/4/2051
[96]         I. Burgués-Ceballos, L. Lucera, P. Tiwana, K. Ocytko, L. W. Tan, S. Kowalski, et al., "Transparent organic photovoltaics: A strategic niche to advance commercialization," Joule, vol. 5, pp. 2261-2272, 2021/09/15/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S2542435121003160
[97]         S. A. Gevorgyan, M. V. Madsen, B. Roth, M. Corazza, M. Hösel, R. R. Søndergaard, et al., "Lifetime of Organic Photovoltaics: Status and Predictions," Advanced Energy Materials, vol. 6, p. 1501208, 2016. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201501208
[98]         H. Zhang, X. Qiao, Y. Shen, and M. Wang, "Effect of temperature on the efficiency of organometallic perovskite solar cells," Journal of Energy Chemistry, vol. 24, pp. 729-735, 2015/11/01/ 2015. Available: https://www.sciencedirect.com/science/article/pii/S2095495615000765
[99]         A. O. M. Maka and T. S. O'Donovan, "Effect of thermal load on performance parameters of solar concentrating photovoltaic: High-efficiency solar cells," Energy and Built Environment, vol. 3, pp. 201-209, 2022/04/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S2666123321000118
[100]      M. Xing, Y. Zhang, Q. Shen, and R. Wang, "Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells," Solar Energy, vol. 195, pp. 1-5, 2020/01/01/ 2020. Available: https://www.sciencedirect.com/science/article/pii/S0038092X19311004
[101]      S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, et al., "Definition of encapsulation barrier requirements: A method applied to organic solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. S65-S69, 2011/05/01/ 2011. Available: https://www.sciencedirect.com/science/article/pii/S0927024811000493
[102]      L. J. Sutherland, H. C. Weerasinghe, and G. P. Simon, "A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics," Advanced Energy Materials, vol. 11, p. 2101383, 2021. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202101383
[103]      J. Gan, M. Yu, R. L. Z. Hoye, K. P. Musselman, Y. Li, X. Liu, et al., "Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics," Materials Today Nano, vol. 13, p. 100101, 2021/03/01/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S2588842020300304
[104]      J. Jean, J. Xiao, R. Nick, N. Moody, M. Nasilowski, M. Bawendi, et al., "Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics," Energy & Environmental Science, vol. 11, pp. 2295-2305, 2018. Available: http://dx.doi.org/10.1039/C8EE01348A
[105]      K. Y. Mitra, C. Zeiner, P. Köder, J. Müller, E. Lotter, A. Willert, et al., "Development of a P1-filling process to increase the cell performance in the copper indium gallium Selenide photovoltaics by implementation of the inkjet technology," Micro and Nano Engineering, vol. 16, p. 100152, 2022/08/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S2590007222000491
[106]      A. Abu-Shamleh, H. Alzubi, and A. Alajlouni, "Optimization of antireflective coatings with nanostructured TiO2 for GaAs solar cells," Photonics and Nanostructures - Fundamentals and Applications, vol. 43, p. 100862, 2021/02/01/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S1569441020301905
[107]      M. Hussein, A. H. K. Mahmoud, H. Abdelhamid, S. S. A. Obayya, and M. F. O. Hameed, "Electrical characteristics of modified truncated cone nanowire for efficient light trapping," Photonics and Nanostructures - Fundamentals and Applications, vol. 38, p. 100761, 2020/02/01/ 2020. Available: https://www.sciencedirect.com/science/article/pii/S1569441019300707
[108]      R. A. Ganeev, I. A. Shuklov, A. I. Zvyagin, A. Mardini, A. A. Lizunova, G. S. Boltaev, et al., "Optical nonlinearities of mercury telluride quantum dots measured by nanosecond pulses," Photonics and Nanostructures - Fundamentals and Applications, vol. 50, p. 101025, 2022/07/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S1569441022000359
[109]      X. Hu, C. Zhu, W. Zhang, H. Wang, J. Wang, F. Ren, et al., "Strain release of formamidinium-cesium perovskite with imprint-assisted organic ammonium halide compensation for efficient and stable solar cells," Nano Energy, vol. 101, p. 107594, 2022/10/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S2211285522006723
[110]      P. Wang, B. Chen, R. Li, S. Wang, Y. Li, X. Du, et al., "2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%," Nano Energy, vol. 94, p. 106914, 2022/04/01/ 2022. Available: https://www.sciencedirect.com/science/article/pii/S2211285521011630
[111]      X. Wang, Y. Qiu, L. Wang, T. Zhang, L. Zhu, T. Shan, et al., "Organic nanocrystals induced surface passivation towards high-efficiency and stable perovskite solar cells," Nano Energy, vol. 89, p. 106445, 2021/11/01/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S221128552100700X
[112]      M. F. Abdelbar, M. Abdelhameed, M. Esmat, M. El-Kemary, and N. Fukata, "Energy management in hybrid organic-silicon nanostructured solar cells by downshifting using CdZnS/ZnS and CdZnSe/ZnS quantum dots," Nano Energy, vol. 89, p. 106470, 2021/11/01/ 2021. Available: https://www.sciencedirect.com/science/article/pii/S2211285521007254
[113]      W. Adams. (2011  ). Nanotechnology and Energy, TEDx Houston 2011. Available: https://www.youtube.com/watch?v=1GFst2IQBEM
[114]      E. Musazade, R. Voloshin, N. Brady, J. Mondal, S. Atashova, S. K. Zharmukhamedov, et al., "Biohybrid solar cells: Fundamentals, progress, and challenges," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 35, pp. 134-156, 2018/06/01/ 2018. Available: https://www.sciencedirect.com/science/article/pii/S1389556718300030
[115]      Fraunhofer. (2022, 31/08/2022). Business areas: Photovoltaic.Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany. Available: https://www.ise.fraunhofer.de/en/business-areas.html