Document Type : Review Paper

Authors

Mechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah, Saudi Arabia.

10.22044/rera.2024.15124.1347

Abstract

Renewable energy systems have received special attention in recent decades, mainly due to the environmental problems of using fossil fuels, fluctuation in the price of these fuels, limitations in their resources, and considerable demand for energy. Solar photovoltaic (PV) modules are among the most attractive options for power production using solar energy. A variety of factors, including the material, operating conditions, and temperature, influence PV efficiency. Elevation in the cell temperature causes degradation in efficiency and consequently the production of electricity at a constant solar radiation intensity and operating conditions. In this regard, employment of thermal management systems is considered to avoid temperature increments. Hybrid nanofluids, due to their significant thermophysical properties, are attractive options for thermal management of PV cells. This article reviews and presents studies on the thermal management of PV cells. We conclude that different factors such as the type of nanomaterial, cooling configuration, and operating conditions influence the effectiveness of hybrid nanofluids in thermal management of PV cells. Furthermore, reports suggest that the use of hybrid nanofluids, depending on the nanomaterials, may be more effective than single nanofluids in reducing the temperature of PV modules. Applying hybrid nanofluids instead of pure fluids would result in higher energy and exergy efficiencies. Aside from technical benefits, utilization of hybrid nanofluids in PV cooling could be beneficial in terms of economy. For instance, using hybrid nanofluids for module cooling can reduce the payback period of the systems.

Keywords

Main Subjects