Document Type : Review Paper

Authors

Mechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah, Saudi Arabia.

10.22044/rera.2024.15124.1347

Abstract

Renewable energy systems have received special attention in recent decades, mainly due to the environmental problems of using fossil fuels, fluctuation in the price of these fuels, limitations in their resources, and considerable demand for energy. Solar photovoltaic (PV) modules are among the most attractive options for power production using solar energy. A variety of factors, including the material, operating conditions, and temperature, influence PV efficiency. Elevation in the cell temperature causes degradation in efficiency and consequently the production of electricity at a constant solar radiation intensity and operating conditions. In this regard, employment of thermal management systems is considered to avoid temperature increments. Hybrid nanofluids, due to their significant thermophysical properties, are attractive options for thermal management of PV cells. This article reviews and presents studies on the thermal management of PV cells. We conclude that different factors such as the type of nanomaterial, cooling configuration, and operating conditions influence the effectiveness of hybrid nanofluids in thermal management of PV cells. Furthermore, reports suggest that the use of hybrid nanofluids, depending on the nanomaterials, may be more effective than single nanofluids in reducing the temperature of PV modules. Applying hybrid nanofluids instead of pure fluids would result in higher energy and exergy efficiencies. Aside from technical benefits, utilization of hybrid nanofluids in PV cooling could be beneficial in terms of economy. For instance, using hybrid nanofluids for module cooling can reduce the payback period of the systems.

Keywords

Main Subjects

[1]Magazzino C, Giolli L. Analyzing the relationship between oil prices and renewable energy sources in Italy during the first COVID-19 wave through quantile and wavelet analyses. Renewable Energy Focus 2024;48:100544. https://doi.org/10.1016/j.ref.2024.100544.
 
[2]Boontome P, Therdyothin A, Chontanawat J. Investigating the causal relationship between non-renewable and renewable energy consumption, CO2 emissions and economic growth in Thailand. Energy Procedia 2017;138:925–30. https://doi.org/10.1016/J.EGYPRO.2017.10.141.
 
[3]Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews 2022;161:112279. https://doi.org/10.1016/j.rser.2022.112279.
 
[4]Wang Y, Kamari ML, Haghighat S, Ngo PTT. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J Therm Anal Calorim 2020:1–10. https://doi.org/10.1007/s10973-020-09752-2.
 
[5]Casati E, Galli A, Colonna P. Thermal energy storage for solar-powered organic Rankine cycle engines. Solar Energy 2013;96:205–19. https://doi.org/10.1016/J.SOLENER.2013.07.013.
 
[6]Ye B, Jiang J, Miao L, Yang P, Li J, Shen B. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model. Energies (Basel) 2015;8:13265–83. https://doi.org/10.3390/en81112368.
 
[7]Okinda C, Samoita D, Nzila C. Potential of Accelerated Integration of Solar Electrification in Kenya’s Energy System. Renewable Energy Research and Applications 2024;5:159–70. https://doi.org/10.22044/RERA.2023.13298.1229.
 
[8]Guedri K, Salem M, Assad MEH, Rungamornrat J, Malek Mohsen F, Buswig YM. PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis. Sustainability 2022; 14(19):12298. https://doi.org/10.3390/su141912298
 
[9]Shirazi A, Taylor RA, Morrison GL, White SD. Solar-powered absorption chillers: A comprehensive and critical review. Energy Convers Manag 2018;171:59–81. https://doi.org/10.1016/j.enconman.2018.05.091.
 
[10]Shirazi A, Taylor RA, Morrison GL, White SD. Solar-powered absorption chillers: A comprehensive and critical review. Energy Convers Manag 2018;171:59–81. https://doi.org/10.1016/J.ENCONMAN.2018.05.091.
 
[11]Arabkoohsar A, Sadi M. Technical comparison of different solar-powered absorption chiller designs for co-supply of heat and cold networks. Energy Convers Manag 2020;206:112343. https://doi.org/10.1016/J.ENCONMAN.2019.112343.
 
[12]Norton B, Eames PC, Lo SNG. Alternative approaches to thermosyphon solar-energy water heater performance analysis and characterisation. Renewable and Sustainable Energy Reviews 2001;5:79–96. https://doi.org/10.1016/S1364-0321(00)00003-4.
 
[13]Bouhal T, El Rhafiki T, Kousksou T, Jamil A, Zeraouli Y. PCM addition inside solar water heaters: Numerical comparative approach. J Energy Storage 2018;19:232–46. https://doi.org/10.1016/j.est.2018.08.005.
 
[14]Maftouh A, El Fatni O, Bouzekri S, Rajabi F, Sillanpää M, Butt MH. Economic feasibility of solar-powered reverse osmosis water desalination: a comparative systemic review. Environmental Science and Pollution Research 2023;30:2341–54. https://doi.org/10.1007/S11356-022-24116-Z/METRICS.
 
[15]Rabbi HMF, Sahin AZ. Performance improvement of solar still by using hybrid nanofluids. J Therm Anal Calorim 2020;143:1345–60. https://doi.org/10.1007/s10973-020-10155-6.
 
[16]Song Z, Liu J, Yang H. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review. Appl Energy 2021;298:117247. https://doi.org/10.1016/j.apenergy.2021.117247.
 
[17]Shahabuddin M, Alim MA, Alam T, Mofijur M, Ahmed SF, Perkins G. A critical review on the development and challenges of concentrated solar power technologies. Sustainable Energy Technologies and Assessments 2021;47:101434. https://doi.org/10.1016/j.seta.2021.101434.
 
[18]Qin J, Hu E, Li X. Solar aided power generation: A review. Energy and Built Environment 2020;1:11–26. https://doi.org/10.1016/j.enbenv.2019.09.003.
 
[19]Maghrebi MJ, Masoudi Nejad R, Masoudi S. Performance analysis of sloped solar chimney power plants in the southwestern region of Iran. International Journal of Ambient Energy 2017;38:542–9. https://doi.org/10.1080/01430750.2016.1155487.
 
[20]Petrollese M, Cocco D. A multi-scenario approach for a robust design of solar-based ORC systems. Renew Energy 2020;161:1184–94. https://doi.org/10.1016/J.RENENE.2020.07.120.
 
[21]Ayadi O, Shadid R, Bani-Abdullah A, Alrbai M, Abu-Mualla M, Balah N. Experimental comparison between Monocrystalline, Polycrystalline, and Thin-film solar systems under sunny climatic conditions. Energy Reports 2022;8:218–30. https://doi.org/10.1016/j.egyr.2022.06.121.
 
[22]Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews 2012;16:2920–5. https://doi.org/10.1016/j.rser.2012.02.012.
 
[23]Singh P, Ravindra NM. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells 2012;101:36–45. https://doi.org/10.1016/j.solmat.2012.02.019.
 
[24]Singh P, Singh S, Lal M, Husain M. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells 2008;92:1611–6. https://doi.org/10.1016/j.solmat.2008.07.010.
 
[25]Koundinya S, Vigneshkumar N, Krishnan A. Experimental Study and Comparison with the Computational Study on Cooling of PV Solar Panel Using Finned Heat Pipe Technology. Materials Today: 2017.
 
[26]Alizadeh H, Ghasempour R, Razi Astaraei F, Alhuyi Nazari M. Numerical Modeling of PV Cooling by Using Pulsating Heat Pipe. The 3rd International Conference and Exhibition on Solar Energy ICESE-2016, Tehran: 2016.
 
[27]Verma S, Mohapatra S, Chowdhury S, Dwivedi G. Cooling techniques of the PV module: A review. Mater Today Proc 2021;38:253–8. https://doi.org/10.1016/J.MATPR.2020.07.130.
 
[28]Hamzat AK, Sahin AZ, Omisanya MI, Alhems LM. Advances in PV and PVT cooling technologies: A review. Sustainable Energy Technologies and Assessments 2021;47:101360. https://doi.org/10.1016/J.SETA.2021.101360.
 
[29]Maleki A, Haghighi A, El Haj Assad M, Mahariq I, Alhuyi Nazari M. A review on the approaches employed for cooling PV cells. Solar Energy 2020;209:170–85. https://doi.org/10.1016/j.solener.2020.08.083.
 
[30]Awan AB. Solar photovoltaics thermal management by employment of microchannels: A comprehensive review. International Journal of Thermofluids 2023;20:100517. https://doi.org/10.1016/J.IJFT.2023.100517.
 
[31]Ahmad A, Navarro H, Ghosh S, Ding Y, Roy JN. Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems. Energies (Basel) 2021;14:4130. https://doi.org/10.3390/en14144130.
 
[32]Qasim MA, Ali HM, Khan MN, Arshad N, Khaliq D, Ali Z, et al. The effect of using hybrid phase change materials on thermal management of photovoltaic panels – An experimental study. Solar Energy 2020;209:415–23. https://doi.org/10.1016/j.solener.2020.09.027.
 
[33]Kumar PM, Anandkumar R, Sudarvizhi D, Prakash KB, Mylsamy K. Experimental investigations on thermal management and performance improvement of solar PV panel using a phase change material, 2019, p. 020023. https://doi.org/10.1063/1.5117935.
 
[34]Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag 2020;212:112789. https://doi.org/10.1016/j.enconman.2020.112789.
 
[35]Salman AHA, Hilal KH, Ghadhban SA. Enhancing performance of PV module using water flow through porous media. Case Studies in Thermal Engineering 2022;34:102000. https://doi.org/10.1016/j.csite.2022.102000.
 
[36]Karami N, Rahimi M. Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Convers Manag 2014;86:275–85. https://doi.org/10.1016/J.ENCONMAN.2014.05.037.
 
[37]Ebaid MSY, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Convers Manag 2018;155:324–43. https://doi.org/10.1016/j.enconman.2017.10.074.
 
[38]Sharifpur M, Ahmadi MH, Rungamornrat J, Mohsen FM. Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis. Sustainability 2022, Vol 14, Page 11523 2022;14:11523. https://doi.org/10.3390/SU141811523.
 
[39]Suresh AK, Khurana S, Nandan G, Dwivedi G, Kumar S. Role on nanofluids in cooling solar photovoltaic cell to enhance overall efficiency. Mater Today Proc 2018;5:20614–20. https://doi.org/10.1016/j.matpr.2018.06.442.
 
[40]Janardhana K, Sivakumar A, Suresh R, Ramesh C, Syed Musthafa A, Vishwakarma S. Analyzing thermal performance of a solar PV using a nanofluid. Mater Today Proc 2022;69:1126–9. https://doi.org/10.1016/j.matpr.2022.08.177.
 
[41]Menon GS, Murali S, Elias J, Aniesrani Delfiya DS, Alfiya PV, Samuel MP. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renew Energy 2022;188:986–96. https://doi.org/10.1016/j.renene.2022.02.080.
 
[42]Elmir M, Mehdaoui R, Mojtabi A. Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid. Energy Procedia 2012;18:594–603. https://doi.org/10.1016/j.egypro.2012.05.072.
 
[43]Almitani KH, Elamin AEAMA. Improvement of electrical performance of Photovoltaic cell with incorporating nanofluid flow as cooling system. Alexandria Engineering Journal 2023;76:689–700. https://doi.org/10.1016/j.aej.2023.06.068.
 
[44]Dossumbekov YK, Zhakiyev N, Nazari MA, Salem M, Abdikadyr B. Sensitivity analysis and performance prediction of a micro plate heat exchanger by use of intelligent approaches. International Journal of Thermofluids 2024;22:100601. https://doi.org/10.1016/j.ijft.2024.100601.
 
[45]Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy 2020;204:208–22. https://doi.org/10.1016/j.solener.2020.04.034.
 
[46]Chu Y-M, Farooq U, Mishra NK, Ahmad Z, Zulfiqar F, Yasmin S, et al. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: Applications in nano-energy thermal devices. Case Studies in Thermal Engineering 2023;44:102818. https://doi.org/10.1016/j.csite.2023.102818.
 
[47]Venkateswarlu B, Chavan S, Joo SW, Kim SC. Impact of hybrid nanofluids on thermal management of cylindrical battery modules: A numerical study. J Energy Storage 2024;99:113266. https://doi.org/10.1016/j.est.2024.113266.
 
[48]Asim M, Siddiqui FR. Hybrid Nanofluids—Next-Generation Fluids for Spray-Cooling-Based Thermal Management of High-Heat-Flux Devices. Nanomaterials 2022;12:507. https://doi.org/10.3390/nano12030507.
 
[49]Kumar K, Sarkar J, Mondal SS. Assessment of Newly-Designed Hybrid Nanofluid-Cooled Micro-Channeled Thermal Management System for Li-Ion Battery. Journal of Electrochemical Energy Conversion and Storage 2024;21. https://doi.org/10.1115/1.4062514.
 
[50]Murtadha TK. Effect of using Al2O3 / TiO2 hybrid nanofluids on improving the photovoltaic performance. Case Studies in Thermal Engineering 2023;47:103112. https://doi.org/10.1016/j.csite.2023.103112.
 
[51]Komeili Birjandi A, Eftekhari Yazdi M, Dinarvand S, Salehi GR, Tehrani P. Effect of Using Hybrid Nanofluid in Thermal Management of Photovoltaic Panel in Hot Climates. International Journal of Photoenergy 2021;2021:3167856. https://doi.org/10.1155/2021/3167856.
 
[52]Khan AA, Danish M, Rubaiee S, Yahya SM. Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Clean Eng Technol 2022;11:100572. https://doi.org/10.1016/j.clet.2022.100572.
 
[53]Karaaslan I, Menlik T. Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Solar Energy 2021;224:1260–70. https://doi.org/10.1016/j.solener.2021.06.072.
 
[54]Hormozi Moghaddam M, Karami M. Heat transfer and pressure drop through mono and hybrid nanofluid‐based photovoltaic‐thermal systems. Energy Sci Eng 2022;10:918–31. https://doi.org/10.1002/ese3.1073.
 
[55]Sathyamurthy R, Kabeel AE, Chamkha A, Karthick A, Muthu Manokar A, Sumithra MG. Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Appl Nanosci 2021;11:363–74. https://doi.org/10.1007/s13204-020-01598-2.
 
[56]Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Clean Prod 2021;328:129525. https://doi.org/10.1016/j.jclepro.2021.129525.
 
[57]Sahoo RR. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol 2020;370:19–28. https://doi.org/10.1016/j.powtec.2020.05.013.
 
[58]Wang X, Wen Q, Yang J, Shittu S, Wang X, Zhao X, et al. Heat transfer and flow characteristic of a flat confined loop thermosyphon with ternary hybrid nanofluids for electronic devices cooling. Appl Therm Eng 2023;221:119758. https://doi.org/10.1016/j.applthermaleng.2022.119758.
 
[59]Sundar LS, Chandra Mouli KVV, Said Z, Sousa ACM. Heat Transfer and Second Law Analysis of Ethylene Glycol-Based Ternary Hybrid Nanofluid Under Laminar Flow. J Therm Sci Eng Appl 2021;13. https://doi.org/10.1115/1.4050228.
 
[60]Adun H, Mukhtar M, Adedeji M, Agwa T, Ibrahim KH, Bamisile O, et al. Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids. Energies (Basel) 2021;14:4434. https://doi.org/10.3390/en14154434.
 
[61]Adun H, Adedeji M, Ruwa T, Senol M, Kavaz D, Dagbasi M. Energy, exergy, economic, environmental (4E) approach to assessing the performance of a photovoltaic-thermal system using a novel ternary nanofluid. Sustainable Energy Technologies and Assessments 2022;50:101804. https://doi.org/10.1016/j.seta.2021.101804.
 
[62]         Wole‐Osho I, Adun H, Adedeji M, Okonkwo EC, Kavaz D, Dagbasi M. Effect of hybrid nanofluids mixture ratio on the performance of a photovoltaic thermal collector. Int J Energy Res 2020;44:9064–81. https://doi.org/10.1002/er.5619.
 
[63]Kazemian A, Salari A, Ma T, Lu H. Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system. Solar Energy 2022;239:102–16. https://doi.org/10.1016/j.solener.2022.04.016.
 
[64]Alktranee M, Ahmed Shehab M, Németh Z, Bencs P, Hernadi K. Experimental study for improving photovoltaic thermal system performance using hybrid titanium oxide-copper oxide nanofluid. Arabian Journal of Chemistry 2023;16:105102. https://doi.org/10.1016/j.arabjc.2023.105102.
 
[65]Alktranee M, Shehab MA, Németh Z, Bencs P, Hernadi K. Thermodynamic analysis of mono and hybrid nanofluid effect on the photovoltaic-thermal system performance: A comparative study. Heliyon 2023;9:e22535. https://doi.org/10.1016/j.heliyon.2023.e22535.
 
[66]J. Jasim D, A Al-Asadi H, Alizadeh A, Nabi H, M. Albayati T, K. Salih I, et al. Evaluation of different methods to ameliorate the performance of PV/T systems using hybrid nanofluids and PCM in a spiral tube with different cross sections. Results in Engineering 2023;20:101514. https://doi.org/10.1016/j.rineng.2023.101514.
 
[67]Bahaidarah HMS. Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics. Solar Energy 2016;135:605–17. https://doi.org/10.1016/j.solener.2016.06.015.
 
[68]         Rahimi M, Valeh-e-Sheyda P, Parsamoghadam MA, Masahi MM, Alsairafi AA. Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energy Convers Manag 2014;83:48–57. https://doi.org/10.1016/j.enconman.2014.03.053.
 
[69]Maatoug S, Moulahi A, Bazuhair N, Alqarni S, Selimefendigil F, Aich W, et al. Pulsating multiple nano-jet impingement cooling system design by using different nanofluids for photovoltaic (PV) thermal management. Case Studies in Thermal Engineering 2023;41:102650. https://doi.org/10.1016/j.csite.2022.102650.
 
[70]Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng 2015;91:181–90. https://doi.org/10.1016/j.applthermaleng.2015.07.077.
 
[71]Asadi A, Asadi M, Siahmargoi M, Asadi T, Gholami Andarati M. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation. Int J Heat Mass Transf 2017;108:191–8. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.022.
 
[72]Alhuyi Nazari M, Mukhtar A, Mehrabi A, Ahmadi MH, Sharifpur M, Luong TNL. Effect of using hybrid nanofluid and vortex generator on thermal performance of plate–fin heat exchanger: numerical investigation. J Therm Anal Calorim 2024;149:4227–37. https://doi.org/10.1007/S10973-024-12928-9/METRICS.
 
[73]Esen H, Ozgen F, Esen M, Sengur A. Modelling of a new solar air heater through least-squares support vector machines. Expert Syst Appl 2009;36:10673–82. https://doi.org/10.1016/J.ESWA.2009.02.045.
 
[74]Esen H, Inalli M, Sengur A, Esen M. Modeling a ground-coupled heat pump system by a support vector machine. Renew Energy 2008;33:1814–23. https://doi.org/10.1016/J.RENENE.2007.09.025.
 
[75]Urmi WT, Shafiqah AS, Rahman MM, Kadirgama K, Maleque MA. Preparation Methods and Challenges of Hybrid Nanofluids: A Review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2020;78:56–66. https://doi.org/10.37934/arfmts.78.2.5666.
 
[76]Babar H, Ali HM. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J Mol Liq 2019;281:598–633. https://doi.org/10.1016/j.molliq.2019.02.102.
 
[77]Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences 2009;48:1108–15. https://doi.org/10.1016/j.ijthermalsci.2008.11.012.
 
[78]Aglawe KR, Yadav RK, Thool SB. Preparation, applications and challenges of nanofluids in electronic cooling: A systematic review. Mater Today Proc 2021;43:366–72. https://doi.org/10.1016/J.MATPR.2020.11.679.
 
[79]Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Solar Energy 2019;183:173–203. https://doi.org/10.1016/j.solener.2019.03.012.