[1]Magazzino C, Giolli L. Analyzing the relationship between oil prices and renewable energy sources in Italy during the first COVID-19 wave through quantile and wavelet analyses. Renewable Energy Focus 2024;48:100544.
https://doi.org/10.1016/j.ref.2024.100544.
[2]Boontome P, Therdyothin A, Chontanawat J. Investigating the causal relationship between non-renewable and renewable energy consumption, CO2 emissions and economic growth in Thailand. Energy Procedia 2017;138:925–30.
https://doi.org/10.1016/J.EGYPRO.2017.10.141.
[3]Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews 2022;161:112279.
https://doi.org/10.1016/j.rser.2022.112279.
[4]Wang Y, Kamari ML, Haghighat S, Ngo PTT. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J Therm Anal Calorim 2020:1–10.
https://doi.org/10.1007/s10973-020-09752-2.
[6]Ye B, Jiang J, Miao L, Yang P, Li J, Shen B. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model. Energies (Basel) 2015;8:13265–83.
https://doi.org/10.3390/en81112368.
[7]Okinda C, Samoita D, Nzila C. Potential of Accelerated Integration of Solar Electrification in Kenya’s Energy System. Renewable Energy Research and Applications 2024;5:159–70.
https://doi.org/10.22044/RERA.2023.13298.1229.
[8]Guedri K, Salem M, Assad MEH, Rungamornrat J, Malek Mohsen F, Buswig YM. PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis. Sustainability 2022; 14(19):12298.
https://doi.org/10.3390/su141912298
[12]Norton B, Eames PC, Lo SNG. Alternative approaches to thermosyphon solar-energy water heater performance analysis and characterisation. Renewable and Sustainable Energy Reviews 2001;5:79–96.
https://doi.org/10.1016/S1364-0321(00)00003-4.
[13]Bouhal T, El Rhafiki T, Kousksou T, Jamil A, Zeraouli Y. PCM addition inside solar water heaters: Numerical comparative approach. J Energy Storage 2018;19:232–46.
https://doi.org/10.1016/j.est.2018.08.005.
[14]Maftouh A, El Fatni O, Bouzekri S, Rajabi F, Sillanpää M, Butt MH. Economic feasibility of solar-powered reverse osmosis water desalination: a comparative systemic review. Environmental Science and Pollution Research 2023;30:2341–54.
https://doi.org/10.1007/S11356-022-24116-Z/METRICS.
[17]Shahabuddin M, Alim MA, Alam T, Mofijur M, Ahmed SF, Perkins G. A critical review on the development and challenges of concentrated solar power technologies. Sustainable Energy Technologies and Assessments 2021;47:101434.
https://doi.org/10.1016/j.seta.2021.101434.
[19]Maghrebi MJ, Masoudi Nejad R, Masoudi S. Performance analysis of sloped solar chimney power plants in the southwestern region of Iran. International Journal of Ambient Energy 2017;38:542–9.
https://doi.org/10.1080/01430750.2016.1155487.
[21]Ayadi O, Shadid R, Bani-Abdullah A, Alrbai M, Abu-Mualla M, Balah N. Experimental comparison between Monocrystalline, Polycrystalline, and Thin-film solar systems under sunny climatic conditions. Energy Reports 2022;8:218–30.
https://doi.org/10.1016/j.egyr.2022.06.121.
[22]Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews 2012;16:2920–5.
https://doi.org/10.1016/j.rser.2012.02.012.
[24]Singh P, Singh S, Lal M, Husain M. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells 2008;92:1611–6.
https://doi.org/10.1016/j.solmat.2008.07.010.
[25]Koundinya S, Vigneshkumar N, Krishnan A. Experimental Study and Comparison with the Computational Study on Cooling of PV Solar Panel Using Finned Heat Pipe Technology. Materials Today: 2017.
[26]Alizadeh H, Ghasempour R, Razi Astaraei F, Alhuyi Nazari M. Numerical Modeling of PV Cooling by Using Pulsating Heat Pipe. The 3rd International Conference and Exhibition on Solar Energy ICESE-2016, Tehran: 2016.
[28]Hamzat AK, Sahin AZ, Omisanya MI, Alhems LM. Advances in PV and PVT cooling technologies: A review. Sustainable Energy Technologies and Assessments 2021;47:101360.
https://doi.org/10.1016/J.SETA.2021.101360.
[31]Ahmad A, Navarro H, Ghosh S, Ding Y, Roy JN. Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems. Energies (Basel) 2021;14:4130.
https://doi.org/10.3390/en14144130.
[32]Qasim MA, Ali HM, Khan MN, Arshad N, Khaliq D, Ali Z, et al. The effect of using hybrid phase change materials on thermal management of photovoltaic panels – An experimental study. Solar Energy 2020;209:415–23.
https://doi.org/10.1016/j.solener.2020.09.027.
[33]Kumar PM, Anandkumar R, Sudarvizhi D, Prakash KB, Mylsamy K. Experimental investigations on thermal management and performance improvement of solar PV panel using a phase change material, 2019, p. 020023.
https://doi.org/10.1063/1.5117935.
[37]Ebaid MSY, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Convers Manag 2018;155:324–43.
https://doi.org/10.1016/j.enconman.2017.10.074.
[38]Sharifpur M, Ahmadi MH, Rungamornrat J, Mohsen FM. Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis. Sustainability 2022, Vol 14, Page 11523 2022;14:11523.
https://doi.org/10.3390/SU141811523.
[39]Suresh AK, Khurana S, Nandan G, Dwivedi G, Kumar S. Role on nanofluids in cooling solar photovoltaic cell to enhance overall efficiency. Mater Today Proc 2018;5:20614–20.
https://doi.org/10.1016/j.matpr.2018.06.442.
[40]Janardhana K, Sivakumar A, Suresh R, Ramesh C, Syed Musthafa A, Vishwakarma S. Analyzing thermal performance of a solar PV using a nanofluid. Mater Today Proc 2022;69:1126–9.
https://doi.org/10.1016/j.matpr.2022.08.177.
[41]Menon GS, Murali S, Elias J, Aniesrani Delfiya DS, Alfiya PV, Samuel MP. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renew Energy 2022;188:986–96.
https://doi.org/10.1016/j.renene.2022.02.080.
[43]Almitani KH, Elamin AEAMA. Improvement of electrical performance of Photovoltaic cell with incorporating nanofluid flow as cooling system. Alexandria Engineering Journal 2023;76:689–700.
https://doi.org/10.1016/j.aej.2023.06.068.
[44]Dossumbekov YK, Zhakiyev N, Nazari MA, Salem M, Abdikadyr B. Sensitivity analysis and performance prediction of a micro plate heat exchanger by use of intelligent approaches. International Journal of Thermofluids 2024;22:100601.
https://doi.org/10.1016/j.ijft.2024.100601.
[45]Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy 2020;204:208–22.
https://doi.org/10.1016/j.solener.2020.04.034.
[46]Chu Y-M, Farooq U, Mishra NK, Ahmad Z, Zulfiqar F, Yasmin S, et al. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: Applications in nano-energy thermal devices. Case Studies in Thermal Engineering 2023;44:102818.
https://doi.org/10.1016/j.csite.2023.102818.
[47]Venkateswarlu B, Chavan S, Joo SW, Kim SC. Impact of hybrid nanofluids on thermal management of cylindrical battery modules: A numerical study. J Energy Storage 2024;99:113266.
https://doi.org/10.1016/j.est.2024.113266.
[48]Asim M, Siddiqui FR. Hybrid Nanofluids—Next-Generation Fluids for Spray-Cooling-Based Thermal Management of High-Heat-Flux Devices. Nanomaterials 2022;12:507.
https://doi.org/10.3390/nano12030507.
[49]Kumar K, Sarkar J, Mondal SS. Assessment of Newly-Designed Hybrid Nanofluid-Cooled Micro-Channeled Thermal Management System for Li-Ion Battery. Journal of Electrochemical Energy Conversion and Storage 2024;21.
https://doi.org/10.1115/1.4062514.
[51]Komeili Birjandi A, Eftekhari Yazdi M, Dinarvand S, Salehi GR, Tehrani P. Effect of Using Hybrid Nanofluid in Thermal Management of Photovoltaic Panel in Hot Climates. International Journal of Photoenergy 2021;2021:3167856.
https://doi.org/10.1155/2021/3167856.
[52]Khan AA, Danish M, Rubaiee S, Yahya SM. Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Clean Eng Technol 2022;11:100572.
https://doi.org/10.1016/j.clet.2022.100572.
[54]Hormozi Moghaddam M, Karami M. Heat transfer and pressure drop through mono and hybrid nanofluid‐based photovoltaic‐thermal systems. Energy Sci Eng 2022;10:918–31.
https://doi.org/10.1002/ese3.1073.
[55]Sathyamurthy R, Kabeel AE, Chamkha A, Karthick A, Muthu Manokar A, Sumithra MG. Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Appl Nanosci 2021;11:363–74.
https://doi.org/10.1007/s13204-020-01598-2.
[56]Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Clean Prod 2021;328:129525.
https://doi.org/10.1016/j.jclepro.2021.129525.
[58]Wang X, Wen Q, Yang J, Shittu S, Wang X, Zhao X, et al. Heat transfer and flow characteristic of a flat confined loop thermosyphon with ternary hybrid nanofluids for electronic devices cooling. Appl Therm Eng 2023;221:119758.
https://doi.org/10.1016/j.applthermaleng.2022.119758.
[59]Sundar LS, Chandra Mouli KVV, Said Z, Sousa ACM. Heat Transfer and Second Law Analysis of Ethylene Glycol-Based Ternary Hybrid Nanofluid Under Laminar Flow. J Therm Sci Eng Appl 2021;13.
https://doi.org/10.1115/1.4050228.
[60]Adun H, Mukhtar M, Adedeji M, Agwa T, Ibrahim KH, Bamisile O, et al. Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids. Energies (Basel) 2021;14:4434.
https://doi.org/10.3390/en14154434.
[61]Adun H, Adedeji M, Ruwa T, Senol M, Kavaz D, Dagbasi M. Energy, exergy, economic, environmental (4E) approach to assessing the performance of a photovoltaic-thermal system using a novel ternary nanofluid. Sustainable Energy Technologies and Assessments 2022;50:101804. https://doi.org/10.1016/j.seta.2021.101804.
[62] Wole‐Osho I, Adun H, Adedeji M, Okonkwo EC, Kavaz D, Dagbasi M. Effect of hybrid nanofluids mixture ratio on the performance of a photovoltaic thermal collector. Int J Energy Res 2020;44:9064–81.
https://doi.org/10.1002/er.5619.
[64]Alktranee M, Ahmed Shehab M, Németh Z, Bencs P, Hernadi K. Experimental study for improving photovoltaic thermal system performance using hybrid titanium oxide-copper oxide nanofluid. Arabian Journal of Chemistry 2023;16:105102.
https://doi.org/10.1016/j.arabjc.2023.105102.
[65]Alktranee M, Shehab MA, Németh Z, Bencs P, Hernadi K. Thermodynamic analysis of mono and hybrid nanofluid effect on the photovoltaic-thermal system performance: A comparative study. Heliyon 2023;9:e22535.
https://doi.org/10.1016/j.heliyon.2023.e22535.
[66]J. Jasim D, A Al-Asadi H, Alizadeh A, Nabi H, M. Albayati T, K. Salih I, et al. Evaluation of different methods to ameliorate the performance of PV/T systems using hybrid nanofluids and PCM in a spiral tube with different cross sections. Results in Engineering 2023;20:101514.
https://doi.org/10.1016/j.rineng.2023.101514.
[68] Rahimi M, Valeh-e-Sheyda P, Parsamoghadam MA, Masahi MM, Alsairafi AA. Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energy Convers Manag 2014;83:48–57.
https://doi.org/10.1016/j.enconman.2014.03.053.
[69]Maatoug S, Moulahi A, Bazuhair N, Alqarni S, Selimefendigil F, Aich W, et al. Pulsating multiple nano-jet impingement cooling system design by using different nanofluids for photovoltaic (PV) thermal management. Case Studies in Thermal Engineering 2023;41:102650.
https://doi.org/10.1016/j.csite.2022.102650.
[71]Asadi A, Asadi M, Siahmargoi M, Asadi T, Gholami Andarati M. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation. Int J Heat Mass Transf 2017;108:191–8.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.022.
[72]Alhuyi Nazari M, Mukhtar A, Mehrabi A, Ahmadi MH, Sharifpur M, Luong TNL. Effect of using hybrid nanofluid and vortex generator on thermal performance of plate–fin heat exchanger: numerical investigation. J Therm Anal Calorim 2024;149:4227–37.
https://doi.org/10.1007/S10973-024-12928-9/METRICS.
[75]Urmi WT, Shafiqah AS, Rahman MM, Kadirgama K, Maleque MA. Preparation Methods and Challenges of Hybrid Nanofluids: A Review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2020;78:56–66.
https://doi.org/10.37934/arfmts.78.2.5666.