[1] Sadek, I. & Elgohary, M. (2020). Assessment of renewable energy supply for green ports with a case study. Environmental Science and Pollution Research, vol. 27, no. 5. doi: 10.1007/s11356-019-07150-2.
[2] Sornn-Friese, H., Poulsen, R. T., Nowinska, A. U. & de Langen, P. (2021). What drives ports around the world to adopt air emissions abatement measures Transportation Research Part D: Transport and Environment, vol. 90. doi: 10.1016/j.trd.2020.102644.
[3] Cammin, P., Yu, J., Heilig, L. & Voß, S. (2020). Monitoring of air emissions in maritime ports. Transportation Research Part D: Transport and Environment, vol. 87. doi: 10.1016/j.trd.2020.102479.
[4] Kotrikla, A. M., Lilas, T. & Nikitakos, N. (2017). Abatement of air pollution at an Aegean island port utilizing shore-side electricity and renewable energy. Marine Policy, vol. 75. doi: 10.1016/j.marpol.2016.01.026.
[5] Bjerkan, K. Y. & Seter, H. (2019). Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports? Transportation Research Part D: Transport and Environment, vol. 72. doi: 10.1016/j.trd.2019.05.003.
[6] Tsai, Y. T., Liang, C. J., Huang, K. H., Hung, K. H., Jheng, C. W. & Liang, J. J. (2018). Self-management of greenhouse gas and air pollutant emissions in Taichung Port, Taiwan. Transportation Research Part D: Transport and Environment, vol. 63. doi: 10.1016/j.trd.2018.07.001.
[7] The EcoPorts website (2022). Top 10 Environmental Priorities of Ports 2022 - EcoPorts | ESPO. Available: https://www.ecoports.com/publications/top-10-environmental-priorities-of-ports-2022
[8] Mohammadi, K., Mostafaeipour, A. & Sabzpooshani, M. (2014). Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, vol. 67. doi: 10.1016/j.energy.2014.02.024.
[9] Alavi, O., Mostafaeipour, A., Sedaghat, A. & Qolipour, M. (2017). Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvesting Systems, vol. 4, no. 4. doi: 10.1515/ehs-2017-0003.
[10] Rezaei, M., Mostafaeipour, A., Jafari, N., Naghdi-Khozani, N. & Moftakharzadeh, A. (2020). Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran. Journal of Engineering Design and Technology, vol. 18, no. 6. doi: 10.1108/JEDT-06-2019-0154.
[11] Frid, C., et al. (2012). The environmental interactions of tidal and wave energy generation devices. doi: 10.1016/j.eiar.2011.06.002.
[12] Garavelli, L., Freeman, M. C., Tugade, L. G., Greene, D. & McNally, J. (2022). A feasibility assessment for co-locating and powering offshore aquaculture with wave energy in the United States. Ocean & Coastal Management, vol. 225, p. 106242. doi: 10.1016/J.OCECOAMAN.2022.106242.
[13] Abbaspour, M. & Rahimi, R. (2011). Iran atlas of offshore renewable energies. Renewable Energy, vol. 36, no. 1. doi: 10.1016/j.renene.2010.06.051.
[14] Rashid, A. & Hasanzadeh, S. (2011). Status and potentials of offshore wave energy resources in Chabahar area (NW Oman Sea). doi: 10.1016/j.rser.2011.06.015.
[15] Saket, A. & Etemad-Shahidi, A. (2012). Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, vol. 40, no. 1. doi: 10.1016/j.renene.2011.09.024.
[16] Kamranzad, B., Etemad-Shahidi, A. & Chegini, V. (2013). Assessment of wave energy variation in the Persian Gulf. Ocean Engineering, vol. 70. doi: 10.1016/j.oceaneng.2013.05.027.
[17] Kamranzad, B., Chegini, V. & Etemad-Shahidi, A. (2016). Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy, vol. 94. doi: 10.1016/j.renene.2016.03.084.
[18] Nezhad, M. M., Groppi, D. & Piras, G. (2018). Nearshore wave energy assessment of Iranian coastlines. Proceedings of the World Congress on New Technologies. doi: 10.11159/icepr18.180.
[19] Kamranzad, B. (2018). Persian Gulf zone classification based on the wind and wave climate variability. Ocean Engineering, vol. 169. doi: 10.1016/j.oceaneng.2018.09.020.
[20] Khalifehei, K., Azizyan, G. & Gualtieri, C. (2018). Analyzing the performance of wave-energy generator systems (SSG) for the Southern Coasts of Iran, in the Persian Gulf and Oman Sea. Energies, vol. 11, no. 11. doi: 10.3390/en11113209.
[21] Khojasteh, D., Khojasteh, D., Kamali, R., Beyene, A. & Iglesias, G. (2018). Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. doi: 10.1016/j.rser.2017.06.110.
[22] Zanous, S. P., Shafaghat, R., Alamian, R., Shadloo, M. S. & Khosravi, M. (2019). Feasibility study of wave energy harvesting along the southern coast and islands of Iran. Renewable Energy, vol. 135. doi: 10.1016/j.renene.2018.12.027.
[23] Lenee-Bluhm, P., Paasch, R. & Özkan-Haller, H. T. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy, vol. 36, no. 8. doi: 10.1016/j.renene.2011.01.016.
[24] Aoun, N. S., Harajli, H. A., & Queffeulou, P. (2013). Preliminary appraisal of wave power prospects in Lebanon. Renewable Energy, vol. 53. doi: 10.1016/j.renene.2012.11.008.
[25] Kasiulis, E., Punys, P., & Kofoed, J. P. (2015). Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea. Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2014.08.044.
[26] Sulukan, E. (2018). Wave energy potential assessment for Riva and Foça, Turkey. Journal of Polytechnics. doi: 10.2339/politeknik.385825.
[27] Alcorn, R. (2014). Wave energy. In: Future Energy: Improved, Sustainable and Clean Options for our Planet, pp. 357–382. doi: 10.1016/B978-0-08-099424-6.00017-X.
[28] Kasiulis, E., Kofoed, J. P., Povilaitis, A., & Radzevičius, A. (2017). Spatial distribution of the Baltic Sea near-shore wave power potential along the coast of Klaipėda, Lithuania. Energies, vol. 10, no. 12. doi: 10.3390/en10122170.
[29] Soleimani, K., Ketabdari, M. J., & Khorasani, F. (2015). Feasibility study on tidal and wave energy conversion in Iranian seas. Sustainable Energy Technologies and Assessments, vol. 11. doi: 10.1016/j.seta.2015.03.006.
[30] Zabihian, F., & Fung, A. S. (2011). Review of marine renewable energies: Case study of Iran. Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2461–2474. doi: 10.1016/J.RSER.2011.02.006.
[31] Kamranzad, B., & Hadadpour, S. (2020). A multi-criteria approach for selection of wave energy converter/location. Energy, vol. 204. doi: 10.1016/j.energy.2020.117924.
[32] Soleimani, K., Ketabdari, M. J., & Gharechae, A. (2023). Smoothed particle hydrodynamics study of a heaving point absorber in various waves using wave tank and calm-water models. Physics of Fluids, vol. 35, no. 3. doi: 10.1063/5.0142249.
[33] Soleimani, K., & Ketabdari, M. J. (2022). Performance analysis of a tuned point absorber using SPH calm water and wave tank simulations. Journal of Ocean Engineering and Science. doi: 10.1016/j.joes.2022.03.010.
[34] Soleimani, K., Ketabdari, M. J., & Bingham, H. B. (2022). WCSPH simulation of the forced response of an attenuator oscillating water column wave energy converter. European Journal of Mechanics - B/Fluids, vol. 95, pp. 38–51. doi: 10.1016/J.EUROMECHFLU.2022.04.003.
[35] Ghafari, H. R., Neisi, A., Ghassemi, H., & Iranmanesh, M. (2021). Power production of the hybrid Wavestar point absorber mounted around the Hywind spar platform and its dynamic response. Journal of Renewable and Sustainable Energy, vol. 13, no. 3.
[36] Ghafari, H. R., Ghassemi, H., & He, G. (2021). Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform. Ocean Engineering, vol. 232, p. 109177. doi: 10.1016/J.OCEANENG.2021.109177.
[37] Ghafari, H. R., Ghassemi, H., & Neisi, A. (2022). Power matrix and dynamic response of the hybrid Wavestar-DeepCwind platform under different diameters and regular wave conditions. Ocean Engineering, vol. 247, p. 110734. doi: 10.1016/J.OCEANENG.2022.110734.
[38] Dorostkar, R., Abazari, A., & Ebrahimi, A. (2022). Energy harvesting through an integrated design of a semi-submersible offshore platform with point absorber wave energy converters. International Journal of Coastal, Offshore and Environmental Engineering, vol. 7, no. 4, pp. 27–36.
[39] Jokar, H., Abazari, A., & Dorostkar, R. (2024). Performance evaluation of a hybrid system of dhow ship and wave energy converter for power generation. Renewable Energy Research and Applications.
[40] Gharechae, A., Abazari, A., & Ketabdari, M. J. (2022). A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric. Renewable Energy, vol. 196, pp. 181–194. doi: 10.1016/J.RENENE.2022.06.093.
[41] Gharechae, A., Abazari, A., & Soleimani, K. (2024). Performance assessment of a combined circular aquaculture cage floater and point absorber wave energy converters. Ocean Engineering, vol. 300, p. 117239. doi: 10.1016/J.OCEANENG.2024.117239.
[42] Cascajo, R., García, E., Quiles, E., Correcher, A. & Morant, F. (2019). Integration of marine wave energy converters into seaports: A case study in the port of Valencia. Energies, vol. 12, no. 5. doi: 10.3390/en12050787.
[43] Buccino, M., Stagonas, D. & Vicinanza, D. (2015). Development of a composite sea wall wave energy converter system. Renewable Energy, vol. 81. doi: 10.1016/j.renene.2015.03.010.
[44] Beharie, R. A. (2011). Measurements of shoreline wave action to establish possible environmental and ecological effects from wave energy converter arrays. EWTEC 2011 Proceedings, 2011.
[45] Copping, A. E., Hemery, L. G., Viehman, H., Seitz, A. C., Staines, G. J. & Hasselman, D. J. (2021). Are fish in danger? A review of environmental effects of marine renewable energy on fishes. Biological Conservation, vol. 262, p. 109297, Oct. doi: 10.1016/J.BIOCON.2021.109297.
[46] Akbarifard, S. & Radmanesh, F. (2018). Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm. Ocean Engineering, vol. 167. doi: 10.1016/j.oceaneng.2018.04.092.
[47] Roshan, G., Arab, M. & Klimenko, V. (2019). Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran. Journal of Environmental Health Science & Engineering, vol. 17, no. 2, pp. 889–906. doi: 10.1007/s40201-019-00406-6.
[48] Afarin, M., Hamzeh, M. A. & Negarestan, H. (2015). Sedimentological and geomorphological classification of Chabahar coastal area (Chabahar-Gawater). Journal of Persian Gulf, vol. 6, no. 21, pp. 51–64. Available: http://jpg.inio.ac.ir/article-1-415-en.html. Accessed: Mar. 13, 2023.
[49] Darya Bandar Consulting Engineers. (2019). The executive package for acquiring electricity from solar energy: Economic and technical studies for the 1.2 MW power plant at the Shahid Beheshti Port (in Persian). Tehran.
[50] Aghaei, B., Arasteh, A. M., Lari, K. & Torabi Azad, M. (2021). Numerical modeling of wave reflection from sloped impermeable seawalls using the SPH method: Case study of Chabahar Port. Advances in Civil Engineering, vol. 2021. doi: 10.1155/2021/7382416.
[51] Defne, Z., Haas, K. A. & Fritz, H. M. (2009). Wave power potential along the Atlantic coast of the southeastern USA. Renewable Energy, vol. 34, no. 10. doi: 10.1016/j.renene.2009.02.019.
[52] Aydoĝan, B., Ayat, B. & Yüksel, Y. (2013). Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, vol. 57. doi: 10.1016/j.renene.2013.01.047.
[53] Ayat, B. (2013). Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy, vol. 54. doi: 10.1016/j.energy.2013.02.060.
[54] Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T. & Krokstad, J. (2012). Numerical benchmarking study of a selection of wave energy converters. Renewable Energy, vol. 41. doi: 10.1016/j.renene.2011.10.002.
[55] Beels, C., et al. (2011). A methodology for production and cost assessment of a farm of wave energy converters. Renewable Energy, vol. 36, no. 12, pp. 3402–3416, Dec. doi: 10.1016/J.RENENE.2011.05.019.
[56] Eden, J. A. (2013). Optimum design of the Pelamis wave energy converter.
[57] Development of Marine Energy in New Zealand. (2008).
[58] Marquis, L., Kramer, M., Kringelum, J., Chozas, J. F. & Helstrup, N. E. (2012). Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2.
[59] Diaconu, S. & Rusu, E. (2013). Evaluation of various WEC devices in the Romanian near shore. WSEAS Conference, 2013.
[60] Guillou, N. & Chapalain, G. (2018). Annual and seasonal variabilities in the performances of wave energy converters. Energy, vol. 165. doi: 10.1016/j.energy.2018.10.001.
[61] Einali, A., Nemati, M. H., Banijamali, B. & Hoseini, H. (2022). Prioritize renewable energy resources in main Iranian ports area using AHP method. International Journal of Coastal, Offshore and Environmental Engineering, vol. 7, no. 4, pp. 7–16. doi: 10.22034/ijcoe.2022.166318.
[62] Leng, G. J. (1998). Renewable energy technologies project assessment tool, RETScreen. Energy Diversification Research Laboratory Canada, Varennes, Quebec.
[63] de Oliveira, L., dos Santos, I. F. S., Schmidt, N. L., Tiago Filho, G. L., Camacho, R. G. R. & Barros, R. M. (2021). Economic feasibility study of ocean wave electricity generation in Brazil. Renewable Energy, vol. 178. doi: 10.1016/j.renene.2021.07.009.