Document Type : Original Article

Authors

1 Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran.

2 Chabahar Maritime University, Iran.

Abstract

This research evaluates the feasibility of utilizing wave energy at Chabahar Port as an alternative power source. The first part of the study analyzed seasonal and annual wind and wave characteristics, as well as the directional distributions of winds and waves, utilizing long-term buoy measurements. The extractable power output was determined based on the wave scatter diagram for Chabahar Port and the power matrix of various existing wave power devices. The average annual wave power at this location is 4.1 kW/m. However, wave power exhibited significant variation across the autumn, winter, spring, and summer seasons, averaging 1.46, 1.48, 4.4, and 6.94 kW/m, respectively. Among the thirteen wave power concepts evaluated, the Wave Dragon and the 1500 kW Pelamis demonstrated the best performance. The Wave Dragon is identified as the preferred wave power device for Chabahar Port, considering its power production capability, seabed compatibility, and adaptability to diverse meteorological conditions. Additionally, RETScreen Expert software was employed to conduct a cost and emissions analysis, indicating that the Wave Dragon and Pelamis can reduce greenhouse gas emissions by 719.7 and 351.6 tons of carbon dioxide, respectively. Consequently, the Wave Dragon offers the most economical power solution for Chabahar Port, with a greater reduction in greenhouse gas emissions.

Keywords

Main Subjects

[1] Sadek, I. & Elgohary, M. (2020). Assessment of renewable energy supply for green ports with a case study. Environmental Science and Pollution Research, vol. 27, no. 5. doi: 10.1007/s11356-019-07150-2.
 
[2] Sornn-Friese, H., Poulsen, R. T., Nowinska, A. U. & de Langen, P. (2021). What drives ports around the world to adopt air emissions abatement measures Transportation Research Part D: Transport and Environment, vol. 90. doi: 10.1016/j.trd.2020.102644.
 
[3] Cammin, P., Yu, J., Heilig, L. & Voß, S. (2020). Monitoring of air emissions in maritime ports. Transportation Research Part D: Transport and Environment, vol. 87. doi: 10.1016/j.trd.2020.102479.
 
[4] Kotrikla, A. M., Lilas, T. & Nikitakos, N. (2017). Abatement of air pollution at an Aegean island port utilizing shore-side electricity and renewable energy. Marine Policy, vol. 75. doi: 10.1016/j.marpol.2016.01.026.
 
[5] Bjerkan, K. Y. & Seter, H. (2019). Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports? Transportation Research Part D: Transport and Environment, vol. 72. doi: 10.1016/j.trd.2019.05.003.
 
[6] Tsai, Y. T., Liang, C. J., Huang, K. H., Hung, K. H., Jheng, C. W. & Liang, J. J. (2018). Self-management of greenhouse gas and air pollutant emissions in Taichung Port, Taiwan. Transportation Research Part D: Transport and Environment, vol. 63. doi: 10.1016/j.trd.2018.07.001.
 
[7] The EcoPorts website (2022). Top 10 Environmental Priorities of Ports 2022 - EcoPorts | ESPO. Available: https://www.ecoports.com/publications/top-10-environmental-priorities-of-ports-2022
 
[8] Mohammadi, K., Mostafaeipour, A. & Sabzpooshani, M. (2014). Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, vol. 67. doi: 10.1016/j.energy.2014.02.024.
 
[9] Alavi, O., Mostafaeipour, A., Sedaghat, A. & Qolipour, M. (2017). Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvesting Systems, vol. 4, no. 4. doi: 10.1515/ehs-2017-0003.
 
[10] Rezaei, M., Mostafaeipour, A., Jafari, N., Naghdi-Khozani, N. & Moftakharzadeh, A. (2020). Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran. Journal of Engineering Design and Technology, vol. 18, no. 6. doi: 10.1108/JEDT-06-2019-0154.
 
[11] Frid, C., et al. (2012). The environmental interactions of tidal and wave energy generation devices. doi: 10.1016/j.eiar.2011.06.002.
 
[12] Garavelli, L., Freeman, M. C., Tugade, L. G., Greene, D. & McNally, J. (2022). A feasibility assessment for co-locating and powering offshore aquaculture with wave energy in the United States. Ocean & Coastal Management, vol. 225, p. 106242. doi: 10.1016/J.OCECOAMAN.2022.106242.
 
[13] Abbaspour, M. & Rahimi, R. (2011). Iran atlas of offshore renewable energies. Renewable Energy, vol. 36, no. 1. doi: 10.1016/j.renene.2010.06.051.
 
[14] Rashid, A. & Hasanzadeh, S. (2011). Status and potentials of offshore wave energy resources in Chabahar area (NW Oman Sea). doi: 10.1016/j.rser.2011.06.015.
 
[15] Saket, A. & Etemad-Shahidi, A. (2012). Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, vol. 40, no. 1. doi: 10.1016/j.renene.2011.09.024.
 
[16] Kamranzad, B., Etemad-Shahidi, A. & Chegini, V. (2013). Assessment of wave energy variation in the Persian Gulf. Ocean Engineering, vol. 70. doi: 10.1016/j.oceaneng.2013.05.027.
 
[17] Kamranzad, B., Chegini, V. & Etemad-Shahidi, A. (2016). Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy, vol. 94. doi: 10.1016/j.renene.2016.03.084.
 
[18] Nezhad, M. M., Groppi, D. & Piras, G. (2018). Nearshore wave energy assessment of Iranian coastlines. Proceedings of the World Congress on New Technologies. doi: 10.11159/icepr18.180.
 
[19] Kamranzad, B. (2018). Persian Gulf zone classification based on the wind and wave climate variability. Ocean Engineering, vol. 169. doi: 10.1016/j.oceaneng.2018.09.020.
 
[20] Khalifehei, K., Azizyan, G. & Gualtieri, C. (2018). Analyzing the performance of wave-energy generator systems (SSG) for the Southern Coasts of Iran, in the Persian Gulf and Oman Sea. Energies, vol. 11, no. 11. doi: 10.3390/en11113209.
 
[21] Khojasteh, D., Khojasteh, D., Kamali, R., Beyene, A. & Iglesias, G. (2018). Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. doi: 10.1016/j.rser.2017.06.110.
 
[22] Zanous, S. P., Shafaghat, R., Alamian, R., Shadloo, M. S. & Khosravi, M. (2019). Feasibility study of wave energy harvesting along the southern coast and islands of Iran. Renewable Energy, vol. 135. doi: 10.1016/j.renene.2018.12.027.
 
[23] Lenee-Bluhm, P., Paasch, R. & Özkan-Haller, H. T. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy, vol. 36, no. 8. doi: 10.1016/j.renene.2011.01.016.
 
[24] Aoun, N. S., Harajli, H. A., & Queffeulou, P. (2013). Preliminary appraisal of wave power prospects in Lebanon. Renewable Energy, vol. 53. doi: 10.1016/j.renene.2012.11.008.
 
[25] Kasiulis, E., Punys, P., & Kofoed, J. P. (2015). Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea. Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2014.08.044.
 
[26] Sulukan, E. (2018). Wave energy potential assessment for Riva and Foça, Turkey. Journal of Polytechnics. doi: 10.2339/politeknik.385825.
 
[27] Alcorn, R. (2014). Wave energy. In: Future Energy: Improved, Sustainable and Clean Options for our Planet, pp. 357–382. doi: 10.1016/B978-0-08-099424-6.00017-X.
 
[28] Kasiulis, E., Kofoed, J. P., Povilaitis, A., & Radzevičius, A. (2017). Spatial distribution of the Baltic Sea near-shore wave power potential along the coast of Klaipėda, Lithuania. Energies, vol. 10, no. 12. doi: 10.3390/en10122170.
 
[29] Soleimani, K., Ketabdari, M. J., & Khorasani, F. (2015). Feasibility study on tidal and wave energy conversion in Iranian seas. Sustainable Energy Technologies and Assessments, vol. 11. doi: 10.1016/j.seta.2015.03.006.
 
[30] Zabihian, F., & Fung, A. S. (2011). Review of marine renewable energies: Case study of Iran. Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2461–2474. doi: 10.1016/J.RSER.2011.02.006.
 
[31] Kamranzad, B., & Hadadpour, S. (2020). A multi-criteria approach for selection of wave energy converter/location. Energy, vol. 204. doi: 10.1016/j.energy.2020.117924.
 
[32] Soleimani, K., Ketabdari, M. J., & Gharechae, A. (2023). Smoothed particle hydrodynamics study of a heaving point absorber in various waves using wave tank and calm-water models. Physics of Fluids, vol. 35, no. 3. doi: 10.1063/5.0142249.
 
[33] Soleimani, K., & Ketabdari, M. J. (2022). Performance analysis of a tuned point absorber using SPH calm water and wave tank simulations. Journal of Ocean Engineering and Science. doi: 10.1016/j.joes.2022.03.010.
 
[34] Soleimani, K., Ketabdari, M. J., & Bingham, H. B. (2022). WCSPH simulation of the forced response of an attenuator oscillating water column wave energy converter. European Journal of Mechanics - B/Fluids, vol. 95, pp. 38–51. doi: 10.1016/J.EUROMECHFLU.2022.04.003.
 
[35] Ghafari, H. R., Neisi, A., Ghassemi, H., & Iranmanesh, M. (2021). Power production of the hybrid Wavestar point absorber mounted around the Hywind spar platform and its dynamic response. Journal of Renewable and Sustainable Energy, vol. 13, no. 3.
 
[36] Ghafari, H. R., Ghassemi, H., & He, G. (2021). Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform. Ocean Engineering, vol. 232, p. 109177. doi: 10.1016/J.OCEANENG.2021.109177.
 
[37] Ghafari, H. R., Ghassemi, H., & Neisi, A. (2022). Power matrix and dynamic response of the hybrid Wavestar-DeepCwind platform under different diameters and regular wave conditions. Ocean Engineering, vol. 247, p. 110734. doi: 10.1016/J.OCEANENG.2022.110734.
 
[38] Dorostkar, R., Abazari, A., & Ebrahimi, A. (2022). Energy harvesting through an integrated design of a semi-submersible offshore platform with point absorber wave energy converters. International Journal of Coastal, Offshore and Environmental Engineering, vol. 7, no. 4, pp. 27–36.
 
[39] Jokar, H., Abazari, A., & Dorostkar, R. (2024). Performance evaluation of a hybrid system of dhow ship and wave energy converter for power generation. Renewable Energy Research and Applications.
 
[40] Gharechae, A., Abazari, A., & Ketabdari, M. J. (2022). A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric. Renewable Energy, vol. 196, pp. 181–194. doi: 10.1016/J.RENENE.2022.06.093.
 
[41] Gharechae, A., Abazari, A., & Soleimani, K. (2024). Performance assessment of a combined circular aquaculture cage floater and point absorber wave energy converters. Ocean Engineering, vol. 300, p. 117239. doi: 10.1016/J.OCEANENG.2024.117239.
 
[42] Cascajo, R., García, E., Quiles, E., Correcher, A. & Morant, F. (2019). Integration of marine wave energy converters into seaports: A case study in the port of Valencia. Energies, vol. 12, no. 5. doi: 10.3390/en12050787.
 
[43] Buccino, M., Stagonas, D. & Vicinanza, D. (2015). Development of a composite sea wall wave energy converter system. Renewable Energy, vol. 81. doi: 10.1016/j.renene.2015.03.010.
 
[44] Beharie, R. A. (2011). Measurements of shoreline wave action to establish possible environmental and ecological effects from wave energy converter arrays. EWTEC 2011 Proceedings, 2011.
 
[45] Copping, A. E., Hemery, L. G., Viehman, H., Seitz, A. C., Staines, G. J. & Hasselman, D. J. (2021). Are fish in danger? A review of environmental effects of marine renewable energy on fishes. Biological Conservation, vol. 262, p. 109297, Oct. doi: 10.1016/J.BIOCON.2021.109297.
 
[46] Akbarifard, S. & Radmanesh, F. (2018). Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm. Ocean Engineering, vol. 167. doi: 10.1016/j.oceaneng.2018.04.092.
 
[47] Roshan, G., Arab, M. & Klimenko, V. (2019). Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran. Journal of Environmental Health Science & Engineering, vol. 17, no. 2, pp. 889–906. doi: 10.1007/s40201-019-00406-6.
 
[48] Afarin, M., Hamzeh, M. A. & Negarestan, H. (2015). Sedimentological and geomorphological classification of Chabahar coastal area (Chabahar-Gawater). Journal of Persian Gulf, vol. 6, no. 21, pp. 51–64. Available: http://jpg.inio.ac.ir/article-1-415-en.html. Accessed: Mar. 13, 2023.
 
[49] Darya Bandar Consulting Engineers. (2019). The executive package for acquiring electricity from solar energy: Economic and technical studies for the 1.2 MW power plant at the Shahid Beheshti Port (in Persian). Tehran.
 
[50] Aghaei, B., Arasteh, A. M., Lari, K. & Torabi Azad, M. (2021). Numerical modeling of wave reflection from sloped impermeable seawalls using the SPH method: Case study of Chabahar Port. Advances in Civil Engineering, vol. 2021. doi: 10.1155/2021/7382416.
 
[51] Defne, Z., Haas, K. A. & Fritz, H. M. (2009). Wave power potential along the Atlantic coast of the southeastern USA. Renewable Energy, vol. 34, no. 10. doi: 10.1016/j.renene.2009.02.019.
 
[52] Aydoĝan, B., Ayat, B. & Yüksel, Y. (2013). Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, vol. 57. doi: 10.1016/j.renene.2013.01.047.
 
[53] Ayat, B. (2013). Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy, vol. 54. doi: 10.1016/j.energy.2013.02.060.
 
[54] Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T. & Krokstad, J. (2012). Numerical benchmarking study of a selection of wave energy converters. Renewable Energy, vol. 41. doi: 10.1016/j.renene.2011.10.002.
 
[55] Beels, C., et al. (2011). A methodology for production and cost assessment of a farm of wave energy converters. Renewable Energy, vol. 36, no. 12, pp. 3402–3416, Dec. doi: 10.1016/J.RENENE.2011.05.019.
 
[56] Eden, J. A. (2013). Optimum design of the Pelamis wave energy converter.
 
[57] Development of Marine Energy in New Zealand. (2008).
 
[58] Marquis, L., Kramer, M., Kringelum, J., Chozas, J. F. & Helstrup, N. E. (2012). Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2.
 
[59] Diaconu, S. & Rusu, E. (2013). Evaluation of various WEC devices in the Romanian near shore. WSEAS Conference, 2013.
 
[60] Guillou, N. & Chapalain, G. (2018). Annual and seasonal variabilities in the performances of wave energy converters. Energy, vol. 165. doi: 10.1016/j.energy.2018.10.001.
 
[61] Einali, A., Nemati, M. H., Banijamali, B. & Hoseini, H. (2022). Prioritize renewable energy resources in main Iranian ports area using AHP method. International Journal of Coastal, Offshore and Environmental Engineering, vol. 7, no. 4, pp. 7–16. doi: 10.22034/ijcoe.2022.166318.
 
[62] Leng, G. J. (1998). Renewable energy technologies project assessment tool, RETScreen. Energy Diversification Research Laboratory Canada, Varennes, Quebec.
 
[63] de Oliveira, L., dos Santos, I. F. S., Schmidt, N. L., Tiago Filho, G. L., Camacho, R. G. R. & Barros, R. M. (2021). Economic feasibility study of ocean wave electricity generation in Brazil. Renewable Energy, vol. 178. doi: 10.1016/j.renene.2021.07.009.