Document Type: Original Article


Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia.


A case study is conducted to evaluate the photovoltaic (PV) performance in a horizontal and in an inclined PV solar thermal collector (PVT) for two different PVT geometries; the series flow and the parallel series flow. It is shown that the series flow gives a better photovoltaic performance at a horizontal PVT surface as compared to the parallel series flow. At mass flow rate of 0.03 kg/s and zero inclination angle (horizontal PVT surface), the PV efficiencies are 14.32 % and 14.25 % for series and parallel series flow, respectively. But for an inclined PVT surface, the parallel series performs better than that of the series flow. At mass flow rate of 0.03 kg/s and inclination angle of 45 °C, the PV efficiencies are 13.76 % and 13.87 % for series and parallel series flow, respectively. It can be concluded that the inclination angle is one of the essential parameters that can be used to evaluate any PVT design and make better comparison between different designs. It is also beneficial for researchers and PVT product designers to know the effectiveness of their collector designs for cooling the PV panel at the early product design stage and to base on the optimum inclination angle of the region.


[1] B. Gharbani, M. Mehrpooya, M. Sadeghzadeh. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management 165 (2018) 113–126114.

[2] M. H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. A. Nazari, R. Kumar, A. Naeimi, T. Ming. Solar power technology for electricity generation: A critical review. Energy Sci Eng. 2018; 6:340–361.

[3] M. Sadeghzadeh, M. H. Ahmadi, M. Kahani, H. Sakhaeinia, H. Chaji, L. Chen. Smart modeling by using artificial intelligent techniques on thermal performance of flat‐plate solar collector using nanofluid. Energy Sci Eng. 2019; 7:1649‐1658.

[4] M. H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. A. Nazari, M. Ghalandari. Utilization of hybrid nanofluids in solar energy applications: A review. Nano-Structures & Nano-Objects 20 (2019) 100386.

[5] M. Mehrpooya, B. Ghorbani, M. Sadeghzadeh. Hybrid solar parabolic dish power plant and high‐temperature phase change material energy storage system. Int J Energy Res. 2019; 1–16. er.4637.

[6] G. Lavinia, M. Antoine, R. Pierre, F. Michel, M. H. Ahmadi, M. Sadeghzadeh. Steady state operation exergy based optimization for solar thermal collectors. AiCHe Journal. 2020.

[7] S. Y. Kee, Y. Munusamy, K. S. Ong. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 131, 2018, 455–471.

[8] H.  H. Al-Kayiem, M. A. Aurybi, S.  I. U. Gilani, A. A. Ismaeel, S. T. Mohammad. Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy, 166, 2019, 490-505.

[9] M. A. Hasan, K. Sumathy. Photovoltaic thermal module concepts and their performance analysis: a review. Renewable and Sustainable Energy Reviews, 2010, 14, 1845–59.

[10] P. Xu, X. Zhang, J. Shen, X. Zhao, W. He, D. Li. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system. Energy Reports, 2015, 1, 30–35.

[11] S. M. Sultan, C. P. Tso, and E. Efzan. Comments on “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India”. Solar Energy Materials and Solar Cells, 2019, 198, 63-64.

[12] S. M. Sultan, C. P. Tso, and E. Efzan. A proposed temperature-dependent photovoltaic efficiency difference factor for evaluating photovoltaic module cooling techniques in natural or forced fluid circulation mode. Arab J. Sci. Eng., 2019, 44, 8123,

[13] S. M. Sultan, C. P. Tso, and E. Efzan. A thermal performance study for different glazed water based photovoltaic thermal collectors. In: AIP Conference Proceedings, 2018, pp. 020307.

[14] S. M. Sultan, C. P. Tso, and E. Efzan. The effect of mass flow rate and solar radiation on the photovoltaic efficiency of a glazed water based PVT. In: AIP Conference Proceedings, 2018, 1, pp-020309.

[15] S. M. Sultan, C. P. Tso, and E. Efzan. A new production cost effectiveness factor for assessing photovoltaic module cooling techniques. Int J Energy Res, 2019, pp. 1–10.

[16] M. I. Fadhel, S. M. Sultan, and S. A. Alkaff. Theoretical study of new configuration of photovoltaic/thermal solar collector (PVT) design. Advanced Materials Research, Trans Tech Publications, Switzerland, 2013, 772, pp. 681-687.

[17] R. Nasrin, M. Hasanuzzaman, N.A. Rahim. Effect of high irradiation and cooling on power, energy and performance of a PVT system. Renewable Energy, 2018, 116, 552-569.

[18] H. Fayaz, R. Nasrin, N.A. Rahim, M. Hasanuzzaman. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 2018, 169, 217–230.

[19] A. Nahar, M. Hasanuzzaman, N. A. Rahim. Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 2017, 144, 517–528.

[20] E. Sakellariou, P. Axaopoulos. Simulation and experimental performance analysis of a modified PV panel to a PVT collector. Solar Energy, 2017, 155, 715–726.

[21] M. M. Rahman, M. Hasanuzzaman, N. A. Rahim. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. Journal of Cleaner Production, 2017, 143, 912-924.

[22] A. Khelifa, K. Touafek, H. Ben Moussa, I. Tabet. Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Solar Energy, 2016, 135, 169–176.

[23] N. Aste, C. D. Pero, F. Leonforte, M. Manfren. Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector. Solar Energy, 2016, 135, 551–568.

[24] G. N. Tiwari, O. Fischer, R. K. Mishra, I. M. Al-Helal. Performance evaluation of N-photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: An experimental study. Solar Energy, 2016, 134, 302–313.

[25] N. Aste, F. Leonforte, C. D. Pero. Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 2015, 112, 85–99. 

[26] A. N. Al-Shamani, S. Mat, M. H. Ruslan, A. M. Abed, and K. Sopian. Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach. International Journal of Environment and Sustainability, 2016, 5, 54-60.

[27] J. I. Bilbao, A. B. Sproul. Detailed PVT-water model for transient analysis using RC networks. Solar Energy, 2015, 115, 680–693.

[28] A. N. Al-Shamani, S. MatM. H. Ruslan, A. M. Abed, K. Sopian. Numerical study on the characteristics of a specially designed rectangular tube absorber photovoltaic thermal collector (PVT). WSEAS Transactions on Environment and Development, 2016, 11, 23-28.

[29] A. Fudholi, K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, H. A. Kazem. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 2014, 78, 641–651.

[30] A. Hazi, G. Hazi, R. Grigore, S. Vernica. Opportunity to use PVT systems for water heating in industry. Applied Thermal Engineering, 2014, 63, 151-157.

[31] F. Shan, L. Cao, G. Fang. Dynamic performances modeling of a photovoltaic–thermal collector with water heating in buildings. Energy and Buildings, 2013, 66, 485–494.

[32] A. Nahar, M. Hasanuzzaman, N. A. Rahim b, S. Parvin. Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renewable Energy, 2019, 132, 284-95.

[33] M. I. Fadhel, Sakhr M. Sultan, Saqaff A. Theoretical study of new configuration of PVT system design. Journal of Advanced Material research, 2013, 681-87.

[34] S. M. Sultan, M. I. Fadhel, Saqaff A. Performance analysis of the photovoltaic/thermal solar collector for different Malaysian conditions. Journal of Applied Mechanics and Materials, 2014, 522-27.

[35] S. M. Sultan, M. N. Ervina Efzan, Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 2018, 173, 939–954.

[36] Y. A. Cengel, A. Ghajar. Heat and Mass Transfer Fundamentals and Applications. Mc Graw Hill, 2011.

[37] L. W. Florschuetz. Extension of the Hottel-Whillier model to the analysis of the combined photovoltaic thermal flat plate collectors. Solar Energy, 2001, 22, 227-41.

[38] G. N. Tiwari, Arvind Tiwari, Shyam. Handbook of Solar Energy Theory, Analysis and Applications. Springer, 2016, ISSN 2199-8582.

[39] S. Dubey, G. N. Tiwari. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy, 2008, 82, 602–612.