Biomass Energy Sources
Praveen Kumar G Yadav; Din Bandhu; Jayasimha K. Reddy; Meenakshi R. Reddy; Chadaram Srinivasu; Ganesh Babu Katam
Abstract
Recycling plastics into energy sources is the most promising method for cutting down on pollution and trash. In this regard, predictions of adiabatic engines using pistons with thermal barrier coatings (TBCs) were made to reduce in-cylinder heat rejection, safeguard the underlying metallic surfaces from ...
Read More
Recycling plastics into energy sources is the most promising method for cutting down on pollution and trash. In this regard, predictions of adiabatic engines using pistons with thermal barrier coatings (TBCs) were made to reduce in-cylinder heat rejection, safeguard the underlying metallic surfaces from thermal cracking, and indeed reduce engine emissions. This study compares the predicted thermal and physical parameters of Plastic Waste Oil (WP) with its diesel blends in fixed proportions of WP10D90 (10% plastic oil, 90% diesel), WP20D80, WP30D70, WP40D60, and WP50D50 to diesel values. The study further explores the concept of the utility function to evaluate the best-ranked fuel blend in each category of various performance characteristics namely BTE, BSFC, UHC, CO, and NOx. Additionally, the effect of the thermal barrier piston coating on CI engine performance metrics and emissions was studied and compared to those achieved with regular diesel oil. When compared to diesel, the results state that the WP40D60 blend has the highest brake thermal efficiency, i.e., 31.62% at 80% load, and the lowest NOx emissions at all load conditions. In addition, it was further observed that the WP20D80 has lower hydrocarbon (HC) emissions at 20% load and an increment in CO emissions for all blends and load combinations. Overall, WP30D70 has come up with the best fuel as per the Utility function.
Biomass Energy Sources
Ganesh S Warkhade; Ganesh Babu Katam; Veeresh Babu Alur
Abstract
This paper analyses the VCR (variable compression ratio) engine's performance, combustion, and emission output responses. The experimental results were modelled using the Grey Taguchi method (GTM) for input parameters of compression ratio, load, and fuel blends. The objective is to find the optimal combination ...
Read More
This paper analyses the VCR (variable compression ratio) engine's performance, combustion, and emission output responses. The experimental results were modelled using the Grey Taguchi method (GTM) for input parameters of compression ratio, load, and fuel blends. The objective is to find the optimal combination of input parameters in the minimum number of experiments for minimum emission, better performance, and combustion parameters. The Taguchi’s L9 orthogonal array with GTM is used to get the optimum combination of input parameters. The Taguchi was used to analyze the S/N ratio of experimental data and the gray-based method for optimization of multi-objective to single-objective optimization by assigning the suitable weighting factor to each response. The S/N ratio analysis of grey relational grade (GRG) shows the fuel B10, CR 16, and load at 100% of the optimal input factor level. This optimal level is further confirmed by the TOPSIS method. The analysis of variance (ANOVA) for input to GRG shows the highest influencing factor is the load with a 52.82% contribution, followed by CR at 28.38%, and fuel at 10.52%. The confirmatory results show an improvement of 56.1%. The novelty of this experimentation was to study feasibility of existing engine for alternative fuel with slight modification. At above optimal conditions, this biodiesel can be used efficiently in an unmodified compression ignition engine.