Amin Baghani
Abstract
In recent years, the growing demand for energy and environmental requirements has focused much attention on solar energy as a renewable source. The building rooftops are the most suitable places for installing photovoltaic panels in urban and rural areas. In large districts, accurate estimation of radiation ...
Read More
In recent years, the growing demand for energy and environmental requirements has focused much attention on solar energy as a renewable source. The building rooftops are the most suitable places for installing photovoltaic panels in urban and rural areas. In large districts, accurate estimation of radiation received by the rooftops requires the existence of detailed 3D information about them. This research aims to provide an efficient method to estimate solar energy production potential from the rooftops using the UAV photogrammetry method and GIS. The proposed method considers both the factors of the geometric features of the rooftops (slope and azimuth) and the shadow of the adjacent features. A threshold for minimum separated suitable rooftops for installing photovoltaic panels received radiation and rooftop area. Converting received radiation into electrical energy was made based on the average level of current world technology for solar panels. Providing a comparison between the amount of electricity produced during the four seasons and throughout the year as an effective parameter related to the consumption pattern is another achievement of this research. The findings of this research can be used in various fields, such as electricity and the construction industry, as well as macro planning, to benefit from clean energy. The results of implementing the proposed method for a rural area showed that out of a total of 543 existing roofs, 422 roofs are suitable for installing solar panels. Also, for these rooftops, the potential to produce 5741 MWh of electricity will be available in one year.