Photovoltaic Systems
Christopher T Warburg; Tatiana Pogrebnaya; Thomas Kivevele
Abstract
This study delves into the ongoing discourse surrounding the optimal tilt angles for solar panels to maximize solar PV power generation. Focused on seven equatorial regions in Tanzania; Dodoma, Dar es Salaam, Kilimanjaro, Kigoma, Iringa, Mtwara, and Mwanza. Multiple mathematical models are employed to ...
Read More
This study delves into the ongoing discourse surrounding the optimal tilt angles for solar panels to maximize solar PV power generation. Focused on seven equatorial regions in Tanzania; Dodoma, Dar es Salaam, Kilimanjaro, Kigoma, Iringa, Mtwara, and Mwanza. Multiple mathematical models are employed to ascertain the most efficient panel tilts. Leveraging solar radiation data spanning from 2000 to 2017, we developed an algorithm specifically tailored for computing suitable tilt angles in the southern hemisphere. Our investigation reveals compelling insights into the variation of optimal panel tilts throughout the year. Notably, the monthly optimal tilt angles fluctuate significantly across the regions. June emerges as the month with the highest recorded monthly optimal tilt angle, ranging from 45 degrees in Mtwara to 31 degrees in Kilimanjaro. Conversely, December showcases the lowest tilt angles, spanning from -30 degrees in Mwanza to -26 degrees in both Kigoma and Iringa. Quarterly angles exhibit peaks during the second quarter of the year, reaching 39 degrees in Mtwara and 27 degrees in Kilimanjaro, while experiencing declines in the fourth quarter, plunging to levels between -19 and -24 degrees. Additionally, our study calculates annual optimal tilt angles, revealing a range from 2 degrees in Kilimanjaro to 11 degrees in Mtwara. Crucially, the deployment of monthly optimally tilted solar PV panels demonstrates a noteworthy enhancement, yielding a 6-11% gain in solar radiation compared to horizontally mounted panels. Our study advocates for the adoption of dynamic tilt adjustment strategies of periodic angle alterations to maximize solar PV power generation.
Solar Thermal Engineering
Mohammed Gwani; Abdullahi Bello Umar; Abubakar Gado Abubakar
Abstract
Traditional cooking methods using fuel woods can pose very serious challenges of local and regional air pollution and land degradation. These methods are inefficient, unsustainable and have serious implications to the environment. To overcome these challenges, a novel four reflectors solar baking oven ...
Read More
Traditional cooking methods using fuel woods can pose very serious challenges of local and regional air pollution and land degradation. These methods are inefficient, unsustainable and have serious implications to the environment. To overcome these challenges, a novel four reflectors solar baking oven has been designed and tested for application in rural areas. The solar baking oven consists of four reflectors made from plane mirrors which reflect the Sun’s rays to the absorber plate placed at the baking chamber. The four reflectors intensify the incoming solar radiation into the baking chamber and increase the thermal properties and efficiency of the oven thereby resulting in shorter cooking time. The result obtained from the study showed that the oven can attain high temperature values. The temperature values are higher when the oven is loaded compared to when the oven is unloaded. When the oven is unloaded, the highest temperature attained by the four reflector solar baking oven is 128.6oC at 13:00 pm, as compared to 133oC at 13:00 pm, when the oven is loaded.