Photovoltaic Systems
Niti Agrawal
Abstract
Partial shading condition (PSC) has a detrimental effect on the output performance of a photovoltaic (PV) system. The output performance of a partially shaded PV array depends not only on the pattern, intensity and location of the shadow but also on its configuration. In this paper, the output performance ...
Read More
Partial shading condition (PSC) has a detrimental effect on the output performance of a photovoltaic (PV) system. The output performance of a partially shaded PV array depends not only on the pattern, intensity and location of the shadow but also on its configuration. In this paper, the output performance of two configurations namely- series-parallel (SP), a commonly used configuration, and total-cross-tied (TCT), have been compared under diverse PSCs. A Lambert W-function-based technique has been developed to model, simulate and estimate the performance of both the configurations of the PV array. The developed program can evaluate the current, voltage and power for the arrays of different sizes under uniform and different PSCs. A detailed investigation has been carried out for the output performance of both configurations under nine diverse shading patterns and different sizes of arrays. Comparative analysis for the configurations is presented based on parameters such as maximum power obtained, partial shading power loss percentage, efficiency and fill factor. It has been found from the obtained results that the output performance of a PV array under PSC is enhanced by using TCT configuration compared to SP configuration.
Photovoltaic Systems
Pankaj Verma; Bharat Gangal; Gaurav Jain; Ravi Hada
Abstract
Most of the partial shading maximum power point tracking methods have been designed for the static shading pattern of the partial shading conditions, however, the irradiance pattern may change further when in partial shading mode. Therefore, to cover this research gap, a global maximum power point control ...
Read More
Most of the partial shading maximum power point tracking methods have been designed for the static shading pattern of the partial shading conditions, however, the irradiance pattern may change further when in partial shading mode. Therefore, to cover this research gap, a global maximum power point control under varying irradiance (GCVI) algorithm is proposed in this paper. The algorithm does not use any sensors to detect the change in the irradiance, instead, the change in the current values of the modules are continuously monitored to detect the change. The reference voltages across which the peaks on the power curve are scanned are obtained from the reference voltage generation process, the consideration of these reference points avoids the excessive power losses in the system. The verification of the working of the proposed algorithm is carried out by simulating the photovoltaic system model on SIMULINK in MATLAB software. Simulations are carried out in various scenarios to show the effectiveness of the control. The simulation results illustrate that with the change in the global maximum under partial shading, the system successfully retunes to the new maximum point; the maximum point retunes from 10 kW to 9.2 kW and from 13.8 kW to 11.5 kW for two different case scenarios. Further, the comparisons are also carried out with the previously reported methods.