Electricity Generation by Green Energy Sources
Rahmat Adiprasetya Al Hasibi; Bagustama Hamka
Abstract
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system ...
Read More
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system is critical in determining whether or not fish farmers can harvest well. An electric motor drives the water wheel in the aeration system, circulating oxygen in the fishpond. Based on the design, operation, and economic parameters, a comparison is made between the proposed system, namely the PV system, and the current system, namely the grid with a diesel generator as a backup. The nominal discount rate, diesel fuel price, and grid reliability level have all been subjected to sensitivity analysis. The Hybrid Optimization of Multiple Energy Resources software was used for the study. The results show that the on-grid PV system can continuously provide electricity to meet the demand for fish farming. The proposed system has a net present cost that is 20% lower than the net present cost of the current system. The cost of energy generated by the on-grid PV system is also 27% less than the cost of energy generated by the current system. Changes in fuel prices do not result in changes in net present cost for all levels of grid reliability to produce continuity in electricity supply. The nominal discount rate strongly influences the net present cost, the higher the nominal discount rate, the lower the resulting net present cost.
Energy Policy
Nazlı Ersoy
Abstract
The article presents an MCDM model based on the Improved Entropy and PIV methods to analyze the development of renewable energy in Nordic-Baltic countries. The analysis was conducted on eight alternatives and ten criteria, and sensitivity analysis was applied to assess the model's suitability. The impact ...
Read More
The article presents an MCDM model based on the Improved Entropy and PIV methods to analyze the development of renewable energy in Nordic-Baltic countries. The analysis was conducted on eight alternatives and ten criteria, and sensitivity analysis was applied to assess the model's suitability. The impact of 34 different variations in criterion weights on the results was examined. The findings demonstrate that Norway emerges as the most appropriate alternative, and the smallest weight change required to alter the current ranking is 18.93%.
M. Taghavi; H. Salarian; B. Ghorbani
Abstract
The present study economically evaluates a combined hydrogen liquefaction configuration using combined heat and power system, photovoltaic cells unit and liquid air energy recovery for precooling under climatic states of Yazd, Iran. The LAC recovery is used to precool hydrogen. Moreover, the cascade ...
Read More
The present study economically evaluates a combined hydrogen liquefaction configuration using combined heat and power system, photovoltaic cells unit and liquid air energy recovery for precooling under climatic states of Yazd, Iran. The LAC recovery is used to precool hydrogen. Moreover, the cascade refrigeration systems with helium and hydrogen refrigerants are employed to supply refrigeration and liquefaction. The rest of the power required for refrigeration cycles to liquefy hydrogen is supplied by PVC unit. This integrated structure generates liquid hydrogen by receiving 5559 kW of power from PVC unit, 60.79 kg/h of natural gas, 8000 kg/h of liquid air and 1028 kg/h of gaseous hydrogen as inputs. The annualized cost of the configuration is applied to economically evaluate the hydrogen liquefaction system using renewable energies. The developed integrated structure is economically evaluated by HYSYS V10 software and m-file code in the MATLAB package. The economic research results of the hybrid cycle indicate the period of return, prime price of liquid hydrogen production and additive value are 4.249 years, 5.432 USD/kg LH2 and 1.567 USD/kg LH2, respectively. The economic sensitivity examination of the combined system reveals POR increases from 2.295 to 13.97 years and net annual profit decreases from 32.66 to 5.366 MMUSD/year by increasing the gaseous hydrogen cost from 1.4 to 3.4 USD/kg LH2. Moreover, POR increases from 2.753 to 25.07 years and levelized cost of product increases from 5.02 to 7.488 US$/kg LH2 by increasing the capital cost from 52.5 to 217.5 MMUSD.
Transformation of Generated Electricity by Renewable Energies to Grid
M. Mahmoudian; S. Sadi; J. Gholami; Alirza Karimi
Abstract
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of ...
Read More
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of proposed hub are being modeled, but also the sensitivity analysis of each power supplier are investigated. Since some of input power carriers in the hub, are decreased slightly or immediately according to unsolicited situations, the output electrical or thermal profile may not be supplied completely. Therefore the network operator must make a proper decision to utilize the best carriers not to reduce the system efficiency if possible. In this regard, the objective function including the energy costs for electrical, thermal and cooling demand carriers is optimized and the best solution will be extracted based on conditional value at risk (CAVR) of electricity market actors, using GAMS/CPLEX software, results in the higher the risk the network operator takes, the higher the profit from futures contracts. In the next step, the electricity price is predicted using ARIMA approach for the next four weeks and the sensitivity analysis for the future of the energy hub will be examined. The simulation results and changes in the share of energy carriers show that the importance of passive defense must be considered in the planning for energy supply of office buildings and the percentage of unsupplied energy must be studied.