M. Akhlaghi; F. Ghafoorian
Abstract
Unacceptable air pollution leads to a remarkable increase in the consumption of renewable energy. Wind energy is known as one of the conventional renewable sources, therefore installation of wind turbines has increased over the past three decades. Savonius wind turbine is one of the types of vertical ...
Read More
Unacceptable air pollution leads to a remarkable increase in the consumption of renewable energy. Wind energy is known as one of the conventional renewable sources, therefore installation of wind turbines has increased over the past three decades. Savonius wind turbine is one of the types of vertical axis wind turbines. This type has many advantages namely low noise, self-start capability and closer spacing. Some studies has been carried out to increase the efficiency of wind turbines by optimizing the geometry. In the present study, the arc angle of Savonius turbine blades and its effects as one of the geometric parameters affecting the efficiency of the turbine have been investigated within a CFD method. The amount of arc angle, also called camber angle, is very effective in the optimal efficiency of Savonius wind turbine. To investigate this issue, three different arc angles in the different tip speed ratios have been evaluated. The values of power and torque coefficients which play a vital role in the efficiency of the above turbine have been considered with respect to the changes in the amount of three different arc angle. The results of three-dimensional numerical solution show that the highest power and torque coefficients are obtained with values (0.0261) and (0.501) at a 180 degree arc angle, respectively. Adopting values other than the above value will cause a significant drop in efficiency.
Wind Energy
N. Mishra; A. Jain; A. Nair; B. Khanna; S. Mitra
Abstract
As the energy demand is growing and fossil fuel based energy resources are getting depleted, there has been an increased focus on the use of renewable energy resources. Wind energy is a highly suitable energy resource that can be harvested for the purpose. This research deals with the design and fabrication ...
Read More
As the energy demand is growing and fossil fuel based energy resources are getting depleted, there has been an increased focus on the use of renewable energy resources. Wind energy is a highly suitable energy resource that can be harvested for the purpose. This research deals with the design and fabrication of novel designs as a mean to harness wind energy using a ‘Savonius’ Turbine. It is generally employed to harvest the low to very low wind speed potentials. The paper introduces a novel concept about a Ducted Savonius wind turbine where power generation can increase more than 10 folds. The paper provides experimental validation of the effect of using a converging ducted structure with a single stage and double stage configurations of a Savonius wind turbine. The paper also compares the turbine’s performance with and without endplates and compares Single Stage and Double Stage Turbine. The experiment results show that around 15% increase in tangential blade velocity in single stage rotor when end plates are used. The results of the study proves that power coefficient increases with the addition of a converging ducted structure with the Savonius wind turbine, and also with the use of endplates.