Photovoltaic Systems
Faridul Islam; Md. Mominul Islam
Abstract
Sustainable Development Goal 13 is an activity committed with the intention of stabilizing greenhouse gas (GHG) levels in the environment to stop potentially harmful human meddling with the climate system. GHG are released into the environment from various non-renewable energy sources of power generation ...
Read More
Sustainable Development Goal 13 is an activity committed with the intention of stabilizing greenhouse gas (GHG) levels in the environment to stop potentially harmful human meddling with the climate system. GHG are released into the environment from various non-renewable energy sources of power generation and many industries that cause extensive damage to the environment. Some countries have begun to implement various pollution prevention strategies, such as power generation from renewable energy sources, which emit no greenhouse gases (GHG) or CO2. This study focuses on an analysis of GHG emission reduction along with the financial feasibility of a grid-connected 100MW PV solar system. This study uses RETScreen software to evaluate the GHG emissions reduction analysis as well as a financial analysis of the system. The annual electricity supplied to the local grid of the proposed PV power plant is 137,481MWh. The cost of reducing CO2 emissions has a positive impact on the overall cumulative cash flow of the proposed system.
Photovoltaic Systems
M. Mirzaei Omrani; M. Mirzaei Omrani
Abstract
Solar energy as renewable and clean energy has a remarkable share in improving the water-energy-food nexus. However, due to occupying a vast area of land, the development of large-scale photovoltaic systems is a serious challenge, particularly in regions with land restrictions. As a solution, it is argued ...
Read More
Solar energy as renewable and clean energy has a remarkable share in improving the water-energy-food nexus. However, due to occupying a vast area of land, the development of large-scale photovoltaic systems is a serious challenge, particularly in regions with land restrictions. As a solution, it is argued that the installation of the floating photovoltaic systems on the water reservoirs can save land as well as reduce the evaporation rate. The aim of this study is to economically and environmentally evaluate the feasibility of the installation of a 10-megawatt floating photovoltaic power plant on a water reservoir. Results show that the payback period of investment and internal rate of return are achieved at 5.2 years and 20.4%, respectively. It is also found that if only 0.3% of the water reservoir surface is covered, evaporation volume will be decreased from 441.2 up to 515.2 thousand cubic meters. Moreover, environmental assessment demonstrates that 8470 to 15311 tons of CO2 and 27 to 52.3 tons of NOx are not released into the atmosphere. Ultimately, sensitivity analysis proves that if the capital cost is reduced by 30%, the payback period will be shortened to 3.6 years. Furthermore, such a project in Chah-nimeh will be profitable as long as the electricity purchasing tariffs are more than US$ 0.096/kWh.
Energy Policy
M. Shiri Dezaki; Z. Zandian Sefiddashti; M. Jahangiri; A. Haghani; A. Tahmasebi
Abstract
The outbreak of Coronavirus disease (COVID-19) in late 2019 and its eventual transformation into a global pandemic caused a shock wave across countries. The renewable energy (RE) sector, which has always been one of the leading areas for promoting environmental sustainability, has not been spared from ...
Read More
The outbreak of Coronavirus disease (COVID-19) in late 2019 and its eventual transformation into a global pandemic caused a shock wave across countries. The renewable energy (RE) sector, which has always been one of the leading areas for promoting environmental sustainability, has not been spared from the epidemic. The integration of the effects of the epidemic on the global economy and the fluctuation of oil prices due to global quarantines around the world increased the impact of this disease on the RE industry. Although the COVID-19 crisis has had a negative effect on efforts to develop RE, analysts believe that in the future, more of the world's energy needs will come from RE sources. The International Energy Agency (IEA) has claimed that RE consumption is likely to increase because people tend to have clean and sustainable energy sources such as wind, water, and solar energy more than before. In the present work, the effects of the COVID-19 outbreak on environmental changes, energy consumption, the need to use RE, investments made in the field of RE, and the well-being of the people of the world are examined and details and results will be discussed. The main aim of the present work is to review the studies of researchers on the impact of COVID-19 disease on the environment and RE.