Electricity Generation by Green Energy Sources
Mowffaq Oreijah; Hosam Faqeha; Moaz Al-Lehaibi; Kamel Guedri; Sina Hassanlue
Abstract
Distributed electricity generation has been a long-standing focus for researchers and policymakers. With the global rise in electricity demand, various generation methods such as solar, wind, fuel cells, and internal combustion engines—are being implemented, each with distinct advantages and drawbacks. ...
Read More
Distributed electricity generation has been a long-standing focus for researchers and policymakers. With the global rise in electricity demand, various generation methods such as solar, wind, fuel cells, and internal combustion engines—are being implemented, each with distinct advantages and drawbacks. Micro gas turbines have emerged as a viable candidate for a reliable, cost-effective, and accessible energy production system. To enhance overall system efficiency, the heat produced from fuel combustion in these turbines can also be used to generate hot water. This study investigates micro gas turbines fueled by biogas, analyzing the effects of several critical parameters: Turbine Inlet Temperature (TIT), Compressor Pressure Ratio (CPR), and recuperator effectiveness within the cycle. The thermodynamic modeling uses the thermally perfect gas model and was conducted in EES (Engineering Equation Solver), with a selected commercial gas microturbine used for validation. Variable fluid thermodynamic properties are accounted for based on temperature, providing accuracy under diverse operational scenarios. It is found that to achieve the maximum overall efficiency, there is an optimal value for the CPR while it increases with increment in the TIT and recuperator effectiveness.
Photovoltaic Systems
Bandar Mohammad Fadhl; Basim Mohammed Makhdoum; Kamel Guedri
Abstract
Renewable energy systems have received special attention in recent decades, mainly due to the environmental problems of using fossil fuels, fluctuation in the price of these fuels, limitations in their resources, and considerable demand for energy. Solar photovoltaic (PV) modules are among the most attractive ...
Read More
Renewable energy systems have received special attention in recent decades, mainly due to the environmental problems of using fossil fuels, fluctuation in the price of these fuels, limitations in their resources, and considerable demand for energy. Solar photovoltaic (PV) modules are among the most attractive options for power production using solar energy. A variety of factors, including the material, operating conditions, and temperature, influence PV efficiency. Elevation in the cell temperature causes degradation in efficiency and consequently the production of electricity at a constant solar radiation intensity and operating conditions. In this regard, employment of thermal management systems is considered to avoid temperature increments. Hybrid nanofluids, due to their significant thermophysical properties, are attractive options for thermal management of PV cells. This article reviews and presents studies on the thermal management of PV cells. We conclude that different factors such as the type of nanomaterial, cooling configuration, and operating conditions influence the effectiveness of hybrid nanofluids in thermal management of PV cells. Furthermore, reports suggest that the use of hybrid nanofluids, depending on the nanomaterials, may be more effective than single nanofluids in reducing the temperature of PV modules. Applying hybrid nanofluids instead of pure fluids would result in higher energy and exergy efficiencies. Aside from technical benefits, utilization of hybrid nanofluids in PV cooling could be beneficial in terms of economy. For instance, using hybrid nanofluids for module cooling can reduce the payback period of the systems.