Biomass Energy Sources
Ganesh S Warkhade; Ganesh Babu Katam; Veeresh Babu Alur
Abstract
This paper analyses the VCR (variable compression ratio) engine's performance, combustion, and emission output responses. The experimental results were modelled using the Grey Taguchi method (GTM) for input parameters of compression ratio, load, and fuel blends. The objective is to find the optimal combination ...
Read More
This paper analyses the VCR (variable compression ratio) engine's performance, combustion, and emission output responses. The experimental results were modelled using the Grey Taguchi method (GTM) for input parameters of compression ratio, load, and fuel blends. The objective is to find the optimal combination of input parameters in the minimum number of experiments for minimum emission, better performance, and combustion parameters. The Taguchi’s L9 orthogonal array with GTM is used to get the optimum combination of input parameters. The Taguchi was used to analyze the S/N ratio of experimental data and the gray-based method for optimization of multi-objective to single-objective optimization by assigning the suitable weighting factor to each response. The S/N ratio analysis of grey relational grade (GRG) shows the fuel B10, CR 16, and load at 100% of the optimal input factor level. This optimal level is further confirmed by the TOPSIS method. The analysis of variance (ANOVA) for input to GRG shows the highest influencing factor is the load with a 52.82% contribution, followed by CR at 28.38%, and fuel at 10.52%. The confirmatory results show an improvement of 56.1%. The novelty of this experimentation was to study feasibility of existing engine for alternative fuel with slight modification. At above optimal conditions, this biodiesel can be used efficiently in an unmodified compression ignition engine.
Systems with Low Energy Consumption
Seyed E. Hoseini; M. Simab; B. Bahmani-Firouzi
Abstract
The argument of power systems planning in home microgrids has become one of the burning topics in optimization studies today among the researchers. Since the installation and use of high-capacity energy sources in power systems have many limitations and constraints, so part of the perspective of power ...
Read More
The argument of power systems planning in home microgrids has become one of the burning topics in optimization studies today among the researchers. Since the installation and use of high-capacity energy sources in power systems have many limitations and constraints, so part of the perspective of power systems studies tends to operate residential microgrids. For this purpose, in this paper, operation planning is based on a residential microgrid consisting of combined heat and power (CHP), heat storage tank and boiler, and when possible, surplus electricity is sold to the upstream network to generate revenue. One of the innovations of this paper is the use of the exergy function to complete the optimization and, in practice, combine energy with economics. Other objective functions of this paper are to discuss the reduction of carbon dioxide in the air and the cost of operation. Energy management and planning in this home microgrid is tested with different capacities and types of CHPs, so that the home operator can choose the best mode to use. The multi-stage decision based dynamic programing (MSD-DP) optimization approach is used to minimize the operation costs of proposed framework. The most important innovation of this paper is the use of exergy function for energy management in a residential complex where CHP can also be used to generate electricity and heat simultaneously. Therefore, determining the capacity of CHP and the possibility of exchanging electricity with the upstream network can be mentioned as other innovations of this research.
Transformation of Generated Electricity by Renewable Energies to Grid
M. Mahmoudian; S. Sadi; J. Gholami; Alirza Karimi
Abstract
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of ...
Read More
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of proposed hub are being modeled, but also the sensitivity analysis of each power supplier are investigated. Since some of input power carriers in the hub, are decreased slightly or immediately according to unsolicited situations, the output electrical or thermal profile may not be supplied completely. Therefore the network operator must make a proper decision to utilize the best carriers not to reduce the system efficiency if possible. In this regard, the objective function including the energy costs for electrical, thermal and cooling demand carriers is optimized and the best solution will be extracted based on conditional value at risk (CAVR) of electricity market actors, using GAMS/CPLEX software, results in the higher the risk the network operator takes, the higher the profit from futures contracts. In the next step, the electricity price is predicted using ARIMA approach for the next four weeks and the sensitivity analysis for the future of the energy hub will be examined. The simulation results and changes in the share of energy carriers show that the importance of passive defense must be considered in the planning for energy supply of office buildings and the percentage of unsupplied energy must be studied.
T. Oyegoke; E. Obadiah; Y. S. Sardauna MOHAMMED; O. Alao BAMIGBALA; O. A. Oluwarotimi OWOLABI; T. Tongshuwar GEOFFREY; A. Oyegoke; A. Onadeji
Abstract
Increasing energy demand and fossil fuel dependency have increased interest in bioethanol production in recent years. The use of conventional saccharine and starchy materials for ethanol production is prohibitive as it is a threat to food security. As such, rice husk poses to be of great value, providing ...
Read More
Increasing energy demand and fossil fuel dependency have increased interest in bioethanol production in recent years. The use of conventional saccharine and starchy materials for ethanol production is prohibitive as it is a threat to food security. As such, rice husk poses to be of great value, providing a means to utilize waste. This study assessed the economic viability of bioethanol production from rice husk waste, which entails capital and manufacturing cost estimation, and profitability of this process. Further cost optimization studies were carried to determine the material cost, government subsidy, and tax potential to maximize the overall financial benefit (i.e., ROI and net profit) of the bioethanol production. Findings from this study indicated that transforming rice husk into bioethanol would not be economically feasible due to negative net profit (i.e., a loss on investment) obtained from its profitability analysis. Further studies indicated that the project was susceptible to the raw material cost, subsidy, and tax rate. Result obtained from the optimization studies indicates that if the rice husk sales as low as 1.38 US$/kg, and Government introduced 25% subsidy and tax-free policy on bioethanol production, the project would yield a net worth of US$ 5 million per annum, payback period of 5.5 years, and a return on investment of 16.1%. Therefore, this study recommends introducing a subsidy and tax-waiver policy for biofuels production to encourage investors and promote cleaner fuels in emerging nations.
Electricity Generation by Green Energy Sources
Sh. Momen; J. Nikoukar; M. Gandomkar
Abstract
Global warming and prices of energy carriers within political conflicts between different nations, are some of the problems for traditional energy production and economic dispatch. In traditional generation systems, about 25 percentage of energy is wasted, and the presence of Distributed Energy Resources ...
Read More
Global warming and prices of energy carriers within political conflicts between different nations, are some of the problems for traditional energy production and economic dispatch. In traditional generation systems, about 25 percentage of energy is wasted, and the presence of Distributed Energy Resources (DERs) such as Photovoltaic, Wind Turbine and wind farms, Fuel Cell, and the Combined Heat and Power can reduce fuel consumption, pollution, transmission losses, and increase the microgrid productivity. In this paper, a complete energy management framework in a microgrid is proposed by considering the load distribution constraints using Improved Shuffled Frog Leaping Algorithm (ISFLA) algorithm, in which it determines the exact share of energy production or consumption for different units. The proposed scheme is used to select the best arrangement of DERs in the power grid, which the output of which is to determine the number and optimal location of DERs in the several bus-bars of the grid. Then, the Independent System Operator (ISO) determines the quantity of energy exchange and consumption by considering the load distribution constraints. Boilers and CHPs have also been used to maintain the balance between the production of thermal power by energy sources and thermal demands. In addition, the Demand Response Program has been used with the aim of smoothing the load curve and reducing the operating costs. Finally, the proposed method is implemented and simulated on the IEEE 69 and 118 bus systems using MATLAB, which comparing the output results with existing algorithms, shows the superiority of the proposed method.
Solar Thermal Engineering
A.R. Shateri; I. Pishkar; Sh. Mohammad Beigi
Abstract
Trombe walls and solar chimneys have been widely used by the construction industry for many years to heat buildings. In this study, the heat conductance of a Trombe wall was simulated and studied. The equations related to energy and momentum were solved numerically by use of the technique of control ...
Read More
Trombe walls and solar chimneys have been widely used by the construction industry for many years to heat buildings. In this study, the heat conductance of a Trombe wall was simulated and studied. The equations related to energy and momentum were solved numerically by use of the technique of control volume. The equations were solved simultaneously using the Simple algorithm. At first, a base case was defined and simulated. A sensitivity analysis study was then performed to investigate the parameters affecting the performance of the wall. Based on the results, an optimized geometry was suggested which maximized the performance of the Trombe wall. In addition, the effect of the presence of the fins on the surface of the absorber wall was studied. In order to obtain the best geometry, the fins were assumed to have different shapes but a constant area. The results showed that the Trombe wall with rectangular fins demonstrated the best performance compared to the other fin geometries studied in this paper. The presence of rectangular fins can increase the room temperature by 1.24% compared to other fin geometries.
Electricity Generation by Green Energy Sources
A.H. Bolurian; H.R. Akbari; T. Daemi; S.A.A. Mirjalily; S. Mousavi
Abstract
This paper proposes an integrated energy management system for grid-connected microgrids, taking into account the demand response programs, fossil fuel-based generators, renewable energy sources and energy storage systems. In the proposed approach, the constraints of the problem are considered jointly ...
Read More
This paper proposes an integrated energy management system for grid-connected microgrids, taking into account the demand response programs, fossil fuel-based generators, renewable energy sources and energy storage systems. In the proposed approach, the constraints of the problem are considered jointly in the model of the energy management systems and are used for microgrid energy management planning and economic dispatch. One of the innovations of this paper is to use the Internet of Things (IoT) platform to adjust the maximum ramp rate of production units in microgrid due to the limitations of production capacity. Since the system considered, models the general state of the internet communication of objects without the need to access the communication channel, so that the energy of consumers should be minimized as second objective function.in this platform, whenever one of the objects has a message to send, it sends it without the need to reserve a resource and schedule. The IoT can establish a good relationship between power producers in a way that reduces operating costs by exchanging data. Optimization of energy consumption in the hybrid power grid studied in this paper shows that the use of IoT platform can reduce the transmission line losses in addition to operating costs. The output results of using data in the IoT context and comparing it with the traditional mode represent the superiority of the proposed approach.
J. Taghinezhad; E. Mahmoodi; M. Masdari; R. Alimardani
Abstract
The use of ducted wind turbines is developing and various scientists in their studies investigate the performance, economic analysis, and energy production by these types of turbines at a lower cost. In this paper, the ratio of wind speed increment related to free stream wind speed and turbulence rate ...
Read More
The use of ducted wind turbines is developing and various scientists in their studies investigate the performance, economic analysis, and energy production by these types of turbines at a lower cost. In this paper, the ratio of wind speed increment related to free stream wind speed and turbulence rate in a pre-designed duct used for a horizontal three-blade wind turbine was evaluated using a hot-wire anemometer sensor and data analysis methods. The duct installed in the University of Tehran Aerospace Faculty wind tunnel and flow characterization was performed by using CTA apparatus to measure and evaluate the wind flow turbulence in the throat section of the duct, where the wind turbine was installed. Wind speed analysis was done at different speed of the wind tunnel test section and shown that in the throat section of the duct the wind speed increased with a constant slope and in more analysis, it was found the wind speed in the duct throat can be increased to 2.5 up to 3 times of free stream flow speed at a different wind speed of wind tunnel test section. From spectral analysis, it was found that only a few peaks are included in the extracted frequency that shown low turbulence inside the duct it can be concluded that the flow disturbances will not have a significant impact on the performance of the wind turbine placed inside the duct throat.
Wind Energy
M. A. Javadi; H. Ghomashi; M. Taherinezhad; M. Nazarahari; R. Ghasemiasl
Abstract
AbstractOptimal arrangement of turbines in wind farms is very important to achieve maximum energy at the lowest cost. In the present study, the use of Vestas V-47 wind turbine and uniform one-way wind in achieving the optimal arrangement of horizontal axis turbines in Manjil with genetic and Monte Carlo ...
Read More
AbstractOptimal arrangement of turbines in wind farms is very important to achieve maximum energy at the lowest cost. In the present study, the use of Vestas V-47 wind turbine and uniform one-way wind in achieving the optimal arrangement of horizontal axis turbines in Manjil with genetic and Monte Carlo algorithms has been investigated. Jensen model is used to simulate the wake effect on the downstream turbines. The objective function is considered as the ratio of cost to power of the power plant. The results show that the Monte Carlo method compared with genetic algorithm will give a better result. Under the same conditions, the Monte Carlo algorithm will give 29% and 40% better results in terms of the number of turbines and output power, respectively. In terms of optimization, in the Monte Carlo algorithm, its fitness value is 16% less than the genetic algorithm, which indicates its better optimization.
M. Ghazvini; S.M. Pourkiaei; F. Pourfayaz
Abstract
Finding a superior evaluation for an irreversible actual heat engine (irreversible Carnot heat engine) can be mentioned as the substantial purpose of this study. To obtain this purpose, the considered criteria are Ecological Coefficient of Performance (ECOP), exergetic performance coefficient thermo-economic, ...
Read More
Finding a superior evaluation for an irreversible actual heat engine (irreversible Carnot heat engine) can be mentioned as the substantial purpose of this study. To obtain this purpose, the considered criteria are Ecological Coefficient of Performance (ECOP), exergetic performance coefficient thermo-economic, ecological-based thermo-economic, and ecologico-economical functions. These criteria are optimized by implementing NSGA II and thermodynamic analysis. Irreversibilities of the system is considered for the study assessment, consequently, two states are specified in the optimization procedure. The findings associated with every scheme are assessed independently. In the first scenario, maximizing the power output, First law efficiency of the system, and dimensionless ecological-based thermo-economic function ( ) is set as the target. In the second scenario, the three objective functions such as power output ( ), efficiency ( ) and dimensionless ecologico-economical ( ) are simultaneously maximized. To be clear, the coupled of multi-objective evolutionary approaches (MOEAs) and non-dominated sorting genetic algorithm (NSGA-II) approach are presented. The comparison of three prominent approaches such as: LINAMP, TOPSIS, and FUZZY performs in decision making. Ultimately, error analyses of results based on Maximum Absolute Percentage Error are carried out. According to the results, in the first scenario, the appropriate results were the result of the decisions made by TOPSIS and LINAMP, with a deviation index equal to 0.322 from the ideal ratio of this scenario. In the second scenario, the best decision-making results were achieved by the TOPSIS method, with a deviation index equal to 0.104 from the ideal state for this scenario.