Desalinations Systems with Renewable Energies
Neda Mehtari; Mostafa Kahani; Mohammad Zamen
Abstract
The current research focuses on the utilization of three waste water streams from a power plant located in southwestern Iran for desalination purposes and to prevent the waste of heat from the boiler blowdown stream while reducing carbon dioxide emissions by preheating the cooling water. Three different ...
Read More
The current research focuses on the utilization of three waste water streams from a power plant located in southwestern Iran for desalination purposes and to prevent the waste of heat from the boiler blowdown stream while reducing carbon dioxide emissions by preheating the cooling water. Three different scenarios are simulated using the Thermoflow-GT master 23 software, considering the conditions of power plant. The optimal values for the top brine temperature (TBT) of cooling water and the mass flow rate of the hot steam are selected by sensitivity analysis. The premier scenario consists of eight stages, with five stages dedicated to heat recovery (HGS) and three stages for heat rejection section (HRS). The optimal value for the TBT of cooling water is determined to be 90℃, the produced freshwater capacity in the desalination unit is found to be 1.69 kg/s, and the gain output ratio (GOR) of the system is about 3.60. The proposed unit requires 0.47 and 10.15 kg/s of hot steam and cooling water, respectively and the overall heat transfer coefficient is 2069.2 W/m2 ℃. In addition, the feasibility of utilizing a solar farm to generate the necessary thermal energy for the system is being evaluated.
Desalinations Systems with Renewable Energies
Pankaj PRASAD Dwivedi; Dilip KUMAR Sharma
Abstract
Energy, a necessary component of the invention, has negative externalities on the health of humans and the environment due to its production and use, which hinders national growth. For this reason, countries should act with two main motivations when choosing energy sources. The first should be economic ...
Read More
Energy, a necessary component of the invention, has negative externalities on the health of humans and the environment due to its production and use, which hinders national growth. For this reason, countries should act with two main motivations when choosing energy sources. The first should be economic development by considering the increase in production and efficiency supplied by the source of energy, and the second should be to choose energy resources that will promote the welfare of the people. In this study, conventional and renewable energy sources for the long-term growth of India's energy sector are assessed from a variety of viewpoints, including technical, economic, environmental, and social criteria. In the choice model, the thermal, solar, wind, biomass, and hydro energy options are employed as alternatives. In this study, suitable energy sources are selected for India with the help of the Entropy method and the WASPAS (Weighted Aggregated Sum Product Assessment) method. And, the relevance of environmental, technical, social, and economic aspects of renewable sources of energy is assessed and in the second step, a proposal has been made about which renewable energy source can be suitable to meet the energy requirement in India through the WASPAS technique. From the results obtained from the WASPAS method, it was found that the renewable energy resources suitable for investment in India are hydro, geothermal, wind, biomass and solar energy respectively.