Transformation of Generated Electricity by Renewable Energies to Grid
M. Mahmoudian; S. Sadi; J. Gholami; Alirza Karimi
Abstract
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of ...
Read More
This paper is dealt with energy hub systems in order to evaluate the sensitivity analysis of output power carriers in terms of input electricity and natural gas. Unlike the recent works which were solitary concentrated at operational cost minimization, in this research not only the energy carriers of proposed hub are being modeled, but also the sensitivity analysis of each power supplier are investigated. Since some of input power carriers in the hub, are decreased slightly or immediately according to unsolicited situations, the output electrical or thermal profile may not be supplied completely. Therefore the network operator must make a proper decision to utilize the best carriers not to reduce the system efficiency if possible. In this regard, the objective function including the energy costs for electrical, thermal and cooling demand carriers is optimized and the best solution will be extracted based on conditional value at risk (CAVR) of electricity market actors, using GAMS/CPLEX software, results in the higher the risk the network operator takes, the higher the profit from futures contracts. In the next step, the electricity price is predicted using ARIMA approach for the next four weeks and the sensitivity analysis for the future of the energy hub will be examined. The simulation results and changes in the share of energy carriers show that the importance of passive defense must be considered in the planning for energy supply of office buildings and the percentage of unsupplied energy must be studied.
Transformation of Generated Electricity by Renewable Energies to Grid
A. Ghaedi; M. Mahmoudian; R. Sedaghati
Abstract
The widespread growing of electric vehicles (EVs) in distribution networks could be a variety of challenges and opportunities for the electricity network. This issue is important because the owners of electric vehicles are trying to maximize their profits, which in turn can cause many problems such as ...
Read More
The widespread growing of electric vehicles (EVs) in distribution networks could be a variety of challenges and opportunities for the electricity network. This issue is important because the owners of electric vehicles are trying to maximize their profits, which in turn can cause many problems such as increased losses, congestion, increase network costs, etc. in distribution networks. Therefore, it is required to study different aspects of this new technology such as reliability and failure rate. For this purpose, the presented paper introduces a reliability model based on the Markov theory for different types of electric vehicles, and the main novelty is to determine the impact of the failure rate of the composed components of the each electric vehicle on the overall failure of the vehicle. In the proposed reliability models for these electric vehicles, the failure of the main composed components is considered. To compare different types of electric vehicles from reliability point of view, numerical results associated with the reliability evaluation of these vehicles are given. It is deduced from the numerical results associated to the reliability evaluation of different types of electric vehicles that the reliability of the compound plug-in hybrid electric vehicle is more than the other technologies.