Electricity Generation by Green Energy Sources
Rahmat Adiprasetya Al Hasibi; Bagustama Hamka
Abstract
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system ...
Read More
The implementation of on-grid PV systems was conducted to ensure a continuous supply of electricity. This article discusses implementing an on-grid PV system in a fish farm that requires a continuous electricity supply. Continuous electricity is used to power the aeration system. The aeration system is critical in determining whether or not fish farmers can harvest well. An electric motor drives the water wheel in the aeration system, circulating oxygen in the fishpond. Based on the design, operation, and economic parameters, a comparison is made between the proposed system, namely the PV system, and the current system, namely the grid with a diesel generator as a backup. The nominal discount rate, diesel fuel price, and grid reliability level have all been subjected to sensitivity analysis. The Hybrid Optimization of Multiple Energy Resources software was used for the study. The results show that the on-grid PV system can continuously provide electricity to meet the demand for fish farming. The proposed system has a net present cost that is 20% lower than the net present cost of the current system. The cost of energy generated by the on-grid PV system is also 27% less than the cost of energy generated by the current system. Changes in fuel prices do not result in changes in net present cost for all levels of grid reliability to produce continuity in electricity supply. The nominal discount rate strongly influences the net present cost, the higher the nominal discount rate, the lower the resulting net present cost.
Electricity Generation by Green Energy Sources
Cedric Okinda; Dominic Samoita; Charles Nzila
Abstract
The global electricity demand is rapidly growing due to population increase and industrialization. However, the reliance on fossil fuels and other non-renewable energy resources has resulted in climate change and other unsustainability-related issues. This study aims to determine the significant penetration ...
Read More
The global electricity demand is rapidly growing due to population increase and industrialization. However, the reliance on fossil fuels and other non-renewable energy resources has resulted in climate change and other unsustainability-related issues. This study aims to determine the significant penetration levels of Solar PV on system operations and production costs based on the current year (business as usual scenario) and the accelerated Solar PV scenario (hypothetical future) in the Kenyan electricity generation system. A one-year dynamic analysis based on an hourly time step energy demand was performed using the Energy PLAN simulation tool. The current peak demand for electricity in Kenya was established to be 2,056.67 MW with an installed capacity of 3,074.34 MW with a 2.47% contribution by Solar PV while the curtailed energy was 285.51 GWh. The simulation results showed that large-scale installations of Solar PV can decrease CO₂-equivalent emissions from 0.134 Mt to 0.021 Mt. Both scenarios are presented in terms of their ability to avoid excess electricity production regarding system operations and production costs. Increasing the share of Solar PV in electricity generation is possible by as much as 39.56% (technical) and 30.54% (market economic) simulation. Additionally, the Solar PV electricity produced increased to 19.76 TWh/year from 11.90 TWh/year. Furthermore, the Market Economic Simulation showed that the total investment annual cost for Solar PV in the hypothetical future was low at 10 mEUR/Year. Therefore, large-scale installation of Solar PV in Kenya's energy system is feasible and economically viable based on technical analysis and economic analysis.
Electricity Generation by Green Energy Sources
Melkior Urbanus; Ghaeth Fandi; Erick Mgaya; Zdenek Muller; Josef Tlusty
Abstract
Electric energy is necessary to meet the daily needs of the population, as it is used in cooking, heating, irrigation, lighting and others. There are many residential areas far from the public electricity network, hence the importance of solar energy in meeting the needs of these residents. This paper ...
Read More
Electric energy is necessary to meet the daily needs of the population, as it is used in cooking, heating, irrigation, lighting and others. There are many residential areas far from the public electricity network, hence the importance of solar energy in meeting the needs of these residents. This paper will study the design of a solar photovoltaic system with a capacity of 131.6 kwh. The needs and requirements will be studied first, then a design will be made for The parts of this system, such as inverters, batteries, photovoltaic panels and other parts. The results that we will obtain will confirm that this energy system is able to meet the necessary needs with high efficiency, and will also confirm that it is environmentally friendly in terms of carbon emissions. We will take Tanzania as a case study , the designed system contain 108 panels and about 8kw battery bank to supply the load .
Electricity Generation by Green Energy Sources
Reza Alayi; Salam ollah Mohammadi-Aylar
Abstract
Today, policymakers are aware of the substantial advantages of renewable energies. From the point of view of national and regional decision-makers, the first priority of preparing a com-prehensive energy plan and the second priority of determining the share of renewable energy in the total energy production ...
Read More
Today, policymakers are aware of the substantial advantages of renewable energies. From the point of view of national and regional decision-makers, the first priority of preparing a com-prehensive energy plan and the second priority of determining the share of renewable energy in the total energy production basket of the country is an essential step in the energy policy pro-cess. In choosing from various renewable energy options, environmental dimensions are com-bined with economic, technical, and social criteria, which shows the need to combine these crite-ria, the multi-criteria of the governing decision-making space, and policy-making. Multi-criteria decision-making techniques can play an important role in choosing the best solution and option. The statistical population of this study is eight cities in the case study. The renewable energy sources studied include wind, solar, water, geothermal, and biomass. First, the potential of re-newable energy for the study areas was identified. Then the two main criteria of sustainable de-velopment: economic criteria with 5 sub-criteria and environmental criteria with 3 sub-criteria were analyzed. Finally, using the Economic Analytic Network Process (ANP) sub criterion, the environmental sub-criterion of each of the weighted renewable energies was allocated. One of the essential results of this research is the income of 72868.8 $ from solar power in Ardabil. The cost of energy is $ 2.72 kWh. The lowest cost per unit of energy produced is related to Khalkhal geothermal energy at $ 0.144.
Electricity Generation by Green Energy Sources
S. Poursheikhali
Abstract
In this paper, an energy harvesting assisted wireless network is considered where a source, contrary to the conventional networks, harvests its required energy via two independent energy channels. In addition, we assume a destination terminal, which receives interference signals along with the data transferred ...
Read More
In this paper, an energy harvesting assisted wireless network is considered where a source, contrary to the conventional networks, harvests its required energy via two independent energy channels. In addition, we assume a destination terminal, which receives interference signals along with the data transferred by the source. In this model, the source is considered to scavenge energy from the destination's broadcasted signal and ambient interference signal. We model the energy and data channels via Rayleigh-Racian channel model. Then, the system outage probability is obtained after analyzing the outage probability of energy and data channels. Moreover, another scenario in which the source is assumed to harvest energy from only the destination terminal is investigated. Computer simulations are conducted to evaluate the effectiveness of the proposed approach, and the impacts of different system parameters on the system outage probability are investigated. The results indicate the outperformance of the scenario in which energy harvests via two channels compared to the case where only one energy harvesting channel exists. In addition, the overall system outage highly degrades when outage in energy channels decreases, especially in the first scenario.
Electricity Generation by Green Energy Sources
H. Ashofteh; A. Behzadi Forough
Abstract
Energy is one of the most critical factors in economic development, but achieving sustainable development is impossible without environmental protection and improving economic conditions. If a country is dependent on energy, any structural reform policies to reduce energy consumption may reduce economic ...
Read More
Energy is one of the most critical factors in economic development, but achieving sustainable development is impossible without environmental protection and improving economic conditions. If a country is dependent on energy, any structural reform policies to reduce energy consumption may reduce economic growth. Saving energy consumption and the development and application of alternative technologies, especially renewable energy, has a significant role in controlling and reducing the consumption of fossil energy carriers and, consequently, reducing the emission of environmental pollutants and achieving sustainable development. This article deals with the feasibility of constructing renewable energy power plants in Khoy city. First, using RETSCREEN software, the economic and environmental conditions of the construction of renewable energy power plants in Khoy city are examined. Using PVSYST software, the requirements for constructing solar power plants are discussed in a specialized way. In this article, the inflation rate is 12%, and the interest rate is 4%. The construction of solar and geothermal power plants in this city can be prioritized based on the results. The solar power plant has a production capacity of 30 MW. 212194 meters of land, and a capital of 40 million dollars are needed to construct this solar power plant. The payback period of this project in Khoy city is estimated at 25 years.
Electricity Generation by Green Energy Sources
P. Rajendra Jagadale; A. Bhimji Choudhari; S. Sanjay Jadhav
Abstract
During past decades, increasing energy demand across the world fueled energy production significantly, which lead to environmental impacts such as Global warming, depletion of the ozone layer, it also endangered the Species. Hence, the whole world started shifting towards green energy generation, eliminating ...
Read More
During past decades, increasing energy demand across the world fueled energy production significantly, which lead to environmental impacts such as Global warming, depletion of the ozone layer, it also endangered the Species. Hence, the whole world started shifting towards green energy generation, eliminating all the negative Impacts on the environment. Solar power is the most efficient source of energy among other renewable energy sources. This article analyzes the simulated performance of a 250 kWp grid-connected Si-poly photovoltaic Plant. This study was conducted to evaluate the performance and feasibility of a Solar PV plant for Pune, India Location. Each Module has a rating of 310 Wp are connected in 65 strings with 12 panels per string. 42 String Inverters are utilized. The simulation is carried out in PVsyst 7.2 software and Meteonorm8.0 data is used. The simulation is carried out to get maximum energy production, this experiment was performed in 2 phases, one with a fixed angle throughout the year and another by adjusting the tilt angle for every month. Multiple trials were conducted to get the best angle for maximum production of electricity. And compared their parameters such as incident radiation, Performance ratio, Energy into the grid, energy output at array and losses. The optimum angles were chosen based on input Energy at the grid.
Electricity Generation by Green Energy Sources
Sh. Momen; J. Nikoukar; M. Gandomkar
Abstract
Global warming and prices of energy carriers within political conflicts between different nations, are some of the problems for traditional energy production and economic dispatch. In traditional generation systems, about 25 percentage of energy is wasted, and the presence of Distributed Energy Resources ...
Read More
Global warming and prices of energy carriers within political conflicts between different nations, are some of the problems for traditional energy production and economic dispatch. In traditional generation systems, about 25 percentage of energy is wasted, and the presence of Distributed Energy Resources (DERs) such as Photovoltaic, Wind Turbine and wind farms, Fuel Cell, and the Combined Heat and Power can reduce fuel consumption, pollution, transmission losses, and increase the microgrid productivity. In this paper, a complete energy management framework in a microgrid is proposed by considering the load distribution constraints using Improved Shuffled Frog Leaping Algorithm (ISFLA) algorithm, in which it determines the exact share of energy production or consumption for different units. The proposed scheme is used to select the best arrangement of DERs in the power grid, which the output of which is to determine the number and optimal location of DERs in the several bus-bars of the grid. Then, the Independent System Operator (ISO) determines the quantity of energy exchange and consumption by considering the load distribution constraints. Boilers and CHPs have also been used to maintain the balance between the production of thermal power by energy sources and thermal demands. In addition, the Demand Response Program has been used with the aim of smoothing the load curve and reducing the operating costs. Finally, the proposed method is implemented and simulated on the IEEE 69 and 118 bus systems using MATLAB, which comparing the output results with existing algorithms, shows the superiority of the proposed method.
Electricity Generation by Green Energy Sources
A.H. Bolurian; H.R. Akbari; T. Daemi; S.A.A. Mirjalily; S. Mousavi
Abstract
This paper proposes an integrated energy management system for grid-connected microgrids, taking into account the demand response programs, fossil fuel-based generators, renewable energy sources and energy storage systems. In the proposed approach, the constraints of the problem are considered jointly ...
Read More
This paper proposes an integrated energy management system for grid-connected microgrids, taking into account the demand response programs, fossil fuel-based generators, renewable energy sources and energy storage systems. In the proposed approach, the constraints of the problem are considered jointly in the model of the energy management systems and are used for microgrid energy management planning and economic dispatch. One of the innovations of this paper is to use the Internet of Things (IoT) platform to adjust the maximum ramp rate of production units in microgrid due to the limitations of production capacity. Since the system considered, models the general state of the internet communication of objects without the need to access the communication channel, so that the energy of consumers should be minimized as second objective function.in this platform, whenever one of the objects has a message to send, it sends it without the need to reserve a resource and schedule. The IoT can establish a good relationship between power producers in a way that reduces operating costs by exchanging data. Optimization of energy consumption in the hybrid power grid studied in this paper shows that the use of IoT platform can reduce the transmission line losses in addition to operating costs. The output results of using data in the IoT context and comparing it with the traditional mode represent the superiority of the proposed approach.
Electricity Generation by Green Energy Sources
A. Ahmadi; F. Esmaeilion; A. Esmaeilion; M. A. Ehyaei; J. L. Silveira
Abstract
Until 2026, the annual rate of municipal solid waste production will increase and the per capita waste generation in Iran will be 0.6 kg/person.day. In this paper, the process of conversion of waste-to-energy in Iran is investigated and the future situation is estimated. Also, the trend of waste management ...
Read More
Until 2026, the annual rate of municipal solid waste production will increase and the per capita waste generation in Iran will be 0.6 kg/person.day. In this paper, the process of conversion of waste-to-energy in Iran is investigated and the future situation is estimated. Also, the trend of waste management methods and energy production are evaluated. At the end, the benefits of the waste-to-energy process at the capital of Iran (Tehran) are observed. Waste-to-Energy (WTE) facilities in waste management are used within 3 regions of 22 metropolitan areas of Tehran and serve 950,000 citizens. With manufacturing new WTE plants in Iran, it would be possible to prevent the burning of about 15 million barrels of oil or 255⨯107 cubic meters of natural gas annually and use these fossil fuels to produce petrochemicals and export them. The associated overall expenses of WTE is also estimated in different countries at a rate of GDP between 300 and 3,000 $ per ton of MSW. By substituting WTE plants instead of oil basic plants, can reduce about 0.13 kg/kWh CO2 emissions. While most of the power plants are gas basic, that will have an increase of CO2 emissions of about 0.19 kg / kWh.
Electricity Generation by Green Energy Sources
M. Farzaneh-Gord; H. Hajializadeh; A. H. Sarabandi
Abstract
There has been an increasing interest in the enhancement the efficiency and functionality of engines, particularly petrol ones, in recent years. In this paper, four stroke spark ignition internal combustion engine cycle has been simulated based on first law of thermodynamics. The second law analysis ...
Read More
There has been an increasing interest in the enhancement the efficiency and functionality of engines, particularly petrol ones, in recent years. In this paper, four stroke spark ignition internal combustion engine cycle has been simulated based on first law of thermodynamics. The second law analysis has also been conducted to analyse the effects of ignition timings, combustion duration as well as engine speed upon engine efficiency and performance. The availability (exergy) balance equations of the engine cylinder has been considered in detail. Moreover, total availability fractions and process irreversibilities have been evaluated. By considering the results for brake and indicated mean effective pressure, it is shown that they behave in an opposite way in terms of increasing engine speeds. After perusing the figures, a conclusion is made, revealing that exergetic efficiency rises by increasing engine speed, whereas the opposite is true for brake thermal efficiency. Furthermore, The optimum point in which total efficiency ( both thermal and exergetic) shows the highest possible level happens at the speed of 2500 rpm